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Abstract—Bird strikes pose persistent safety and economic
risks in aviation. We present a dynamic, uncertainty-aware
framework for probabilistic bird-strike risk assessment in air-
port environments. The system combines (i) Kalman-filter state
estimation for real-time bird tracking, informed by seasonal
migration priors; (ii) Bayesian modeling of strike consequences
via Beta–Binomial conjugacy on FAA Wildlife Strike data; and
(iii) Gaussian-process spatial risk mapping that fuses real-time
tracks with historical uncertainty to produce continuous risk
surfaces with predictive variance. A sequential update scheme
with temporal weighting adapts to evolving bird distributions
while controlling the computational cost of GP refits. The
framework yields path-wise risk metrics (means, credible bounds,
exceedance probabilities) for operational corridors. In simulation,
it captures diverging risk profiles across approach and departure
paths while maintaining low tracking error, illustrating end-to-
end uncertainty propagation and decision-relevant outputs.

I. INTRODUCTION

Bird strikes are a persistent and significant hazard in avia-
tion [1], [2]. Approximately 90 % of reported bird strikes occur
below 3,000 ft above ground level and within 9.3 km of an
aerodrome, predominantly during aircraft take-off, climb-out,
approach, and landing [3]. Effective mitigation strategies de-
pend critically on accurate assessment of bird strike risk within
the airport environment and along adjacent flight corridors.

Quantifying bird strike risk is challenging because of its spa-
tiotemporal complexity and constantly changing conditions, as
risk levels fluctuate with the geographic distribution of bird
populations, species specific behaviors (e.g., flocking, altitude
preferences), seasonal migration patterns, and weather condi-
tions [6]. Accurately characterizing and modeling this evolving
risk landscape is a challenge for aviation safety management
systems. Most current bird strike risk tools handle uncertainty
poorly as measurement errors, classification inaccuracies, and
prediction uncertainties accumulate. They typically result in
deterministic categorical outputs without uncertainty quantifi-
cation [2]. Omitting uncertainty information can mislead time
critical flight routing and safety decisions [1].

To address these limitations, this paper presents an inte-
grated simulation framework for dynamic, probabilistic as-
sessment of bird strike risk. The proposed approach uti-
lizes external data sources to inform the underlying models:
historical bird strike consequences are analyzed using the

U.S. Federal Aviation Administration (FAA) Wildlife Strike
Database [3], which contains over 177,000 records detailing
species, damage, and location; while seasonal bird movement
patterns are informed by the A global dataset of directional
migration networks of migratory birds dataset [7]. The frame-
work integrates these data-derived insights with probabilistic
state estimates derived from simulated real-time tracking data
within a cohesive Bayesian workflow, combining multiple
techniques to provide enhanced situational awareness and
quantitative risk outputs. Key components and contributions
include:

• Probabilistic State Estimation: Bird kinematic states
(position, velocity) and their associated uncertainties (Pk)
are estimated using Kalman filters (KF) that process noisy
simulated radar observations. Incorporating seasonal bird
movement behavioral priors derived from the bird migra-
tion networks dataset enhances predictive robustness and
refines these estimates.

• Probabilistic Consequence Modeling: Bayesian param-
eter estimation via a Beta-Binomial conjugate model is
utilized to analyze historical FAA bird strike data. This
produces posterior Beta distributions for the probability
of damage (pdamage) conditioned on context (e.g., species
group, season), effectively quantifying the uncertainty
(V ar(pdamage)) associated with historical risk factors
rather than relying on deterministic frequencies.

• Spatial Risk Mapping with Uncertainty Quantifica-
tion: Gaussian processes (GPs) perform nonparametric
Bayesian regression to learn a continuous spatial risk
map (f(x)). The GP is trained on input locations derived
from Kalman filters (KF) position estimates (xi) paired
with target risk scores (yi) derived via Monte Carlo sam-
pling from the posterior damage probability distributions
(which capture historical uncertainty). To represent the
positional uncertainty associated with the KF estimates,
additional training points are placed in the proximity of
position xi, guided by the KF error covariance matrix
(Pk), and assigned appropriately adjusted target values.
This approach utilizes the flexibility of GPs to model
complex spatial patterns based on uncertain inputs (yi
derived from sampling, and xi represented with neighbor-
hood points) and provides predictive uncertainty (σ2(x∗))



across the airport, crucial for probabilistic assessment
indicating multiple sources of uncertainty.

• Dynamic Adaptation via Sequential Updates: Rec-
ognizing that the airport environment is dynamic, the
GP risk map is updated sequentially using a history
buffer to manage computational load (O(N3) complexity)
and temporal weighting heuristics to prioritize recent
information. This involves systematically increasing the
effective observation noise associated with older training
data points (∆ti) via an exponential decay mechanism
during model refitting. By reducing the influence of
outdated observations, this heuristic enables the spatial
risk representation to adapt dynamically to changing sim-
ulated bird densities and movement patterns, simulating
the variability of bird movement associated risk more
realistically than static models.

II. METHODOLOGY

A. Iterative Simulation Workflow

The core simulation framework operates through an itera-
tive workflow executed at each discrete time step, ∆t. This
sequential flow of data and processing within each time step
allows the modeled spatial risk map to dynamically adapt to
the evolving simulated bird distribution and tracking estimates.

1) Ground-Truth State Evolution: The simulation ad-
vances the ‘true‘ state (position, velocity) for each bird.
This step combines a kinematic prediction (based on
previous velocity) with deterministic seasonal behavioral
adjustments (e.g., migration bias derived from data de-
tailed in Sec. II-B2), adds scaled (∆t) stochastic process
noise representing unpredictable movement components,
and enforces physical boundary constraints (e.g., min-
imum altitude) to generate the updated ground-truth
positions for the current time step.

2) Sensor Observation Simulation: Based on the cur-
rent ground-truth positions, the system simulates the
observation process for the sensors. For each bird, its
detectability by every sensor is evaluated. A bird is
considered potentially detectable by a sensor only if its
3D distance is within the sensor’s specified maximum
range. If within range, a probabilistic detection occurs
based on a model where detection likelihood decreases
quadratically with normalized distance (P (detect) ≈ 1−
(distance/range)2). For each successful sensor detection,
Gaussian noise, with standard deviation equal to the
sensor’s specified accuracy is added to the bird’s true
position to simulate measurement error. If a single bird
is detected by multiple sensors in the same time step,
these individual noisy measurements are combined by
averaging their positions and associated accuracies to
produce a single, consolidated observation point and
effective accuracy for that bird.

3) State Estimation (Filtering): Each bird currently being
tracked has its state updated by its dedicated Kalman

filter instance. The filter processes the combined sensor
observation corresponding to that bird as input and then
executes its Bayesian prediction-update cycle (detailed
in Sec. II-B1) to optimally combine the prior prediction
(informed by kinematics and bird movement behavioral
priors) with the new measurement information, produc-
ing an updated posterior state estimate (xk: position, ve-
locity) and its associated uncertainty covariance matrix
(Pk).

4) Contextual Risk Potential Retrieval: For risk as-
sessment input, the system retrieves the pre-calculated
probabilistic damage potential relevant to the current
situation. Based on the tracked bird’s context (e.g.,
estimated species group) and the current simulation
time (month/season), it looks up the corresponding pos-
terior Beta distribution (pdamage ∼ Beta(αpost, βpost))
derived from the historical FAA data analysis (detailed
in Sec. II-C1).

5) Spatial Risk Model Update: The Gaussian Process
model (Sec. II-D), which represents the continuous
spatial risk is updated with the latest information. New
training data points (Sec. II-D2) are constructed us-
ing the current KF state estimates (xk) as locations.
The corresponding target risk values (yk) are derived
by performing Monte Carlo sampling (Sec. II-C2) on
the retrieved Beta distributions (from step 4) to get
an expected risk score. The GP model is then refit
incorporating these new points and applying temporal
weighting heuristics (Sec. II-D3) to adapt the risk map.

6) Path Risk Evaluation: The updated GP risk map is used
to assess risk along predefined flight corridors. The GP’s
posterior predictive distribution (Sec. II-D4) is queried
at multiple points along each path to obtain location-
specific probabilistic risk estimates (mean, variance,
exceedance probabilities).

B. Bird Tracking and Behavior Modeling

Accurate estimation of bird positions and velocities in near
real-time is crucial for dynamic risk assessment. This frame-
work implements Kalman filters (KFs), a standard recursive
Bayesian technique [8], [9], for this state estimation task,
integrating kinematic modeling with bird movement behav-
ioral priors derived from the bird migration networks dataset.
Kalman filter was selected for its computational efficiency
suitable for tracking multiple targets via recursive updates,
theoretical optimality under linear/Gaussian assumptions, sys-
tematic Bayesian approach to combine model predictions with
noisy sensor data, and ability to quantify state estimation
uncertainty (Pk), which is critical for informing subsequent
probabilistic risk modeling.

1) Kalman filter implementation: Each detected bird is
tracked using an independent Kalman filter instance, simpli-
fying multi-target tracking. The Kalman filter estimates the
bird’s 6D kinematic state vector, consisting of 3D position



(px, py, pz) and 3D velocity (vx, vy, vz):

x =
[
px py pz vx vy vz

]T ∈ R6 (1)

Including velocity is essential for effective prediction. The
Kalman filter’s internal dynamics model implements a near-
constant-velocity (NCV) kinematic model. The NCV model
was selected due to its suitability for tracking targets based on
sensor measurements that primarily provide position informa-
tion (like radar), without directly measuring acceleration [10].
It provides a robust baseline for short term prediction, crucial
for maintaining track continuity between potentially sparse
sensor measurements, while relying on the process noise (Q)
to accommodate deviations from constant-velocity motion.
The Kalman filter operates recursively through prediction and
update steps:

At each discrete time step interval (∆t), the Kalman filter
first predicts the bird’s next state based on the previous poste-
rior estimate x̂k−1 and the NCV motion model represented by
the state transition matrix F . Applying this matrix produces
the predicted state estimate before incorporating the latest
measurement, denoted as x−

k :

x−
k = F x̂k−1 (2)

Specifically, this state transition updates position based on the
previously estimated velocity (p−k = p̂k−1 + v̂k−1∆t) while
assuming velocity remains constant (v−k = v̂k−1) during the
interval. The uncertainty is propagated via the predicted state
error covariance P−

k . This calculation incorporates the process
noise covariance matrix Q, which models the uncertainty
introduced by random perturbations to the state dynamics,
modeled as zero-mean Gaussian noise:

P−
k = F Pk−1 F

T +Q (3)

Q is constructed as a diagonal matrix whose elements rep-
resent the variances of the noise affecting each state com-
ponent (position and velocity), scaled by the time step ∆t.
This structure assumes independent noise components and
models the uncertainty originating from potential deviations
from the constant velocity assumption (e.g., unexpected bird
maneuvers/movements) during ∆t.

When a new radar measurement zk (position) is available,
the Kalman filter corrects its prediction. It computes the
innovation yk, the difference between the actual measurement
and the measurement predicted from the prior state estimate
(H · x−

k ):
yk = zk −H · x−

k (4)

where H is the observation matrix mapping state to mea-
surement space. The optimal Kalman Gain Kk is calculated,
balancing prediction uncertainty (P−

k ) against measurement
uncertainty (R, the measurement noise covariance). This gain
determines how strongly the innovation corrects the predicted
state, producing the updated posterior state estimate x̂k (the
final estimate for time k) and its associated error covariance
Pk.

The posterior state estimate can be expressed explicitly with
hat notation to denote the refined, post-update values:

x̂k =
[
p̂x p̂y p̂z v̂x v̂y v̂z

]T
(5)

where the hat notation (̂·) distinguishes the posterior (after
measurement update) from the predicted state. The covariance
Pk quantifies the remaining uncertainty in this posterior
estimate after incorporating the measurement information.

Spatial Anchors for GP Risk Mapping: The posterior
mean position (p̂x, p̂y, p̂z) from the Kalman filter serves as
a spatial anchor — the most probable 3D location of the
bird at time step k. These spatial anchors form the critical
bridge connecting state estimation to the Gaussian process risk
model (Sec. II-D). Specifically, the posterior mean position
provides the spatial coordinates xi where the GP learns the
risk distribution, while the covariance matrix Pk acts as
an uncertainty prior that determines the confidence weight
assigned to that observation. Regions where the Kalman filter
exhibits high uncertainty (large Pk) contribute less strongly
to the learned spatial risk surface, ensuring consistency in
uncertainty propagation across the entire Bayesian framework.
Each Kalman-filtered bird position thus acts as a weighted
probabilistic anchor in 3D space: highly certain estimates
exert stronger influence on the GP risk field, while uncertain
estimates are appropriately down-weighted.

2) Integration of Behavioral Priors: To improve predictive
robustness and realistic bird movement behavior modeling
beyond the NCV model, especially with sparse data, the KF’s
prediction step incorporates behavioral priors. These priors
deterministically adjust the predicted velocity components in
the state estimate x−

k based on predefined seasonal tendencies
and activity levels derived from ecological migration data [7],
[10]. This produces more constrained and realistic trajectory
estimates.

C. Historical Strike Consequence Analysis

To quantitatively characterize strike severity potential, his-
torical data from the FAA Wildlife Strike Database [3] is uti-
lized to estimate the conditional probability of aircraft damage
given specific contextual factors, P (Damage|Strike, Context).
A Beta-Binomial conjugate model was utilized for its ability to
effectively quantify uncertainty in these probability estimates
based on historical evidence.

1) Bayesian Damage Probability Estimation via Beta-
Binomial Model: The damage probability (pdamage) condi-
tional on various operational and environmental contexts is
estimated. These contexts are defined by specific combinations
of factors identified in the FAA bird strike data such as the
bird’s species group or family group, and the strike incident’s
month or season. Each historical strike event within a given
context is modeled as a Bernoulli trial (damage or no damage).
To represent uncertainty, our prior belief about pdamage for



any context is described by the conjugate Beta distribution,
Beta(αprior, βprior), whose pdf is:

Beta
(
pdamage | α, β

)
= Γ(α+β)

Γ(α) Γ(β) p
α−1
damage (1− pdamage)

β−1

(6)
for 0 ≤ pdamage ≤ 1, α, β > 0. A weakly informative
Beta(1, 9) prior is applied across all contexts. This prior
(mean = 0.1, equivalent to 10 prior observations: 1 damag-
ing, 9 non-damaging) represents a mild baseline assumption
of low damage probability, ensuring the posterior belief is
primarily shaped by the context-specific FAA data evidence
(Ndamage, Nno_damage).

The likelihood of observing the historical data is mod-
eled using the binomial distribution. Given Ndamage damaging
strikes and Nno_damage non-damaging strikes within a specific
context, where Ntotal = Ndamage + Nno_damage, the binomial
likelihood is:

P (Ndamage | pdamage, Ntotal) =
(

Ntotal
Ndamage

)
p
Ndamage
damage(1− pdamage)

Nno_damage

(7)
where

(
Ntotal
Ndamage

)
is the binomial coefficient. This likelihood

quantifies the probability of observing exactly Ndamage dam-
aging events out of Ntotal strikes, given a particular damage
probability pdamage.

Utilizing the Beta-Binomial conjugacy, where the Beta prior
is combined with the binomial likelihood, the posterior distri-
bution for pdamage within this specific context remains a Beta
distribution, Beta(αposterior, βposterior), with updated parameters
reflecting this context-specific evidence:

αposterior = αprior +Ndamage

βposterior = βprior +Nno_damage
(8)

This posterior Beta(αposterior, βposterior) distribution repre-
sents the refined belief about pdamage under the specified
conditions, integrating both prior knowledge and historical
data relevant to that context. The variance of this posterior
distribution, V ar(pdamage), provides a direct quantification
of the uncertainty in the pdamage estimate for that context.
This uncertainty is inversely related to the amount of historical
evidence (Ndamage + Nno_damage) available for the context,
decreasing as more data accumulates.

2) Combining Risk Factors and Propagating Uncertainty
via Monte Carlo Sampling: The overall risk associated with a
bird-path encounter depends on multiple factors: the inherent
damage potential related to the bird’s species and the time of
year (represented by the uncertain posterior Beta distributions
from Sec. II-C1), the geometry of the encounter (proximity),
and a baseline historical risk rate. To integrate these diverse
factors into a single risk score while effectively accounting for
the uncertainty in the damage probabilities, a combined log-
odds modeling and Monte Carlo sampling approach is utilized.

The different risk components are represented on a com-
mon log-odds scale to enable straightforward combination.
This transformation facilitates an additive model where the
distinct influences can be summed linearly. The baseline risk

and proximity effect contribute deterministic log-odds values,
while the species and temporal (monthly or seasonal) effects
contribute probabilistic log-odds values.

The log-odds transformation is employed because it enables
all contributing factors to combine additively rather than multi-
plicatively. In probability space, effects such as species, prox-
imity, and season would interact in complex, nonlinear ways
that are difficult to interpret or separate. By mapping proba-
bilities to log-odds, each factor contributes a linear adjustment
to the total evidence for or against damage—conceptually
analogous to the weights in logistic regression. This provides
both mathematical convenience and interpretability: each term
corresponds directly to an independent influence on the pre-
dicted log-odds of a damaging strike.

Formally, the overall risk function, denoted frisk(·), com-
bines both probabilistic and deterministic components. The
total log-odds is expressed as:

Ltotal = Lbaseline + ωspeciesLdamage,species + ωtemporalLdamage,temporal + Lproximity

(9)
where Ldamage,species and Ldamage,temporal represent the log-odds
of damage derived from the respective posterior Beta distribu-
tions via the logit transformation:

Ldamage = log
(

pdamage

1−pdamage

)
(10)

More generally, this can be expressed as a summation over
all contributing components:

Ltotal =
∑
i

Li (11)

where each Li represents a distinct factor (species, proximity,
temporal, baseline) contributing additively in log-odds space.
The final probability of a damaging strike is obtained by
applying the inverse-logit (logistic) transformation:

frisk(x) =
1

1+e−Ltotal
(12)

This formulation enables the framework to integrate proba-
bilistic insights from the Beta posterior over pdamage with de-
terministic contextual features. Because each term contributes
additively in log-odds space, the influence of every component
remains explicit (its numerical effect is directly represented in
Ltotal), separable (each factor’s contribution can be isolated
and analyzed independently), and explainable (changes in risk
can be traced back to specific environmental or operational
drivers).

Critically, because pdamage is itself uncertain and modeled
as pdamage ∼ Beta(αpost, βpost), the risk function becomes
nonlinear in a random variable. The subsequent operations on
pdamage—taking the logarithm (to obtain log-odds) and then ap-
plying the exponential (through the inverse-logit)—introduce
nonlinear transformations. Hence, the expectation:

E
[(
1 + e−Ltotal

)−1
]

(13)

has no closed-form solution, as the composition of log
and exp functions destroys the conjugacy that made earlier



Bayesian updates tractable. Even though the Beta-Binomial
stage was analytically solvable, this subsequent nonlinear map-
ping makes the overall risk integration analytically intractable.

Monte Carlo (MC) methods are therefore essential for this
integration, allowing approximation of the distribution of the
final risk score by repeatedly sampling from the input distri-
butions (the Beta posteriors) and applying the risk calculation
function to each set of samples. This process empirically
reconstructs how the input uncertainties combine and influence
the output uncertainty, bypassing the need for complex analyt-
ical derivations which may be intractable given the non-linear
transformations (log-odds, inverse logit) involved. For each
encounter, NMC iterations are performed (we set NMC = 500
in experiments). In each iteration j:

1) Sample Probabilities: Independent probability sam-
ples, p

(j)
damage,species and p

(j)
damage,temporal, are drawn

from the posterior Beta distributions reflecting the
species/family and temporal (month/season) contexts.

2) Calculate Probabilistic Log-Odds Contributions: These
sampled probabilities are converted into log-odds devi-
ations from the prior baseline. For each sample j:

L
(j)
damage,species = log

(
p
(j)
damage,species

1− p
(j)
damage,species

)
− log

(
0.1

0.9

)

L
(j)
damage,temporal = log

(
p
(j)
damage,temporal

1− p
(j)
damage,temporal

)
− log

(
0.1

0.9

)
(14)

where the subtracted term log(0.1/0.9) ≈ −2.197
represents the log-odds of the Beta(1,9) prior mean
(0.1). This centering ensures that species or temporal
contexts with average damage rates contribute zero addi-
tional log-odds, while riskier contexts contribute positive
values and safer contexts contribute negative values.
These deviations are then weighted (ωspecies ≈ 1.0,
ωtemporal ≈ 0.8) based on empirically determined
importance and literature support [17].

3) Add Deterministic Log-Odds Components: Two deter-
ministic terms are added:

• A fixed baseline log-odds component: Lbaseline =
−2.5. This empirically calibrated value corresponds
to p ≈ 0.075 (via inv_logit(−2.5) = e−2.5

1+e−2.5 ), con-
sistent with overall FAA damage rates (6-8%) [15].
Note that this differs slightly from the Beta(1,9)
prior mean log-odds (-2.197) to better align with
observed aggregate damage frequencies in the FAA
dataset.

• A proximity log-odds bonus computed as:

L
(j)
proximity = 2.0× (1− d(j)norm)

2 (15)

where d
(j)
norm ∈ [0, 1] is the normalized distance from

the bird to the nearest flight path at iteration j.
The quadratic term (1 − dnorm)

2 ensures the risk
increases sharply near flight paths (maximum of

2.0 at dnorm = 0) while decaying smoothly with
distance, reflecting the heightened danger in aircraft
operational areas [16].

4) Sum Total Log-Odds: The probabilistic and determin-
istic log-odds components are summed to produce the
total log-odds for iteration j:

Lj
total = Lbaseline + ωspeciesL

j
damage,species + ωtemporalL

j
damage,temporal + Lj

proximity

(16)
where the centered log-odds deviations from Step 2
are weighted and combined with the fixed baseline and
dynamic proximity terms.

Repeating steps 1-4 NMC times generates a distribution of
L
(j)
total samples, effectively representing the combined uncer-

tainty. This distribution of total log-odds is then converted back
to a distribution of risk probabilities, P (j)

risk, using the inverse
logit (logistic) function:

P
(j)
risk =

1

1 + exp(−L
(j)
total)

(17)

The mean of this final probability distribution represents the
expected risk score for the encounter, crucially incorporating
the propagated uncertainty:

E[Prisk] =
1

NMC

NMC∑
j=1

P
(j)
risk (18)

This expected score serves as the target value for training
the Gaussian Process spatial risk map:

yk = E[Prisk] (19)

where yk is the risk score assigned to location xk derived from
the Kalman filter (Sec. II-D2).

D. Spatial Risk Mapping via Gaussian processes

Gaussian processes (GPs), a nonparametric Bayesian re-
gression technique [?], are used to model the dynamic spatial
risk. GPs define a probability distribution over possible risk
functions f(x), characterized by a mean and covariance (ker-
nel) function, thus avoiding restrictive assumptions about the
risk distribution’s shape. The GP learns a continuous mapping
from 3D spatial coordinates (x ∈ R3) to the risk score
f(x), conditioned on training data consisting of Kalman filter
position estimates paired with probabilistic risk scores derived
from historical FAA bird strike data. Subsequently, for any
query location x∗, the GP yields a full posterior predictive
distribution p(f(x∗)|data), which provides both the mean
predicted risk µ(x∗) and the associated predictive uncertainty
σ2(x∗).

GPs were selected for this spatial risk modeling task due to
several key advantages: (1) Flexibility: As nonparametric mod-
els, GPs can adaptively capture complex and potentially non-
linear spatial risk distributions without strong prior assump-
tions about the risk function’s form; (2) Uncertainty quantifi-
cation: GPs provide predictive variance, σ2(x∗), alongside the



mean, quantifying confidence based on factors such as training
data density and proximity; and (3) Spatial interpolation: GPs
enable continuous spatial risk estimation by utilizing kernel-
based spatial correlations, allowing effective risk inference
even from sparse bird detections.

1) GP Model Definition: To model the spatial risk field
f(x), the Gaussian Process prior employs a zero mean func-
tion and a carefully chosen covariance function (kernel),
k(xi,xj). The kernel defines prior assumptions about the
risk function’s spatial behavior. Given the complexity of bird
strike risk – influenced by smooth environmental gradients,
localized hotspots, and observation noise – a composite kernel
is selected over simpler, stand-alone kernels. This allows
us to separately model and control different aspects of the
risk variation, leading to a more flexible and interpretable
model. The composite kernel combines spatial structure and
observation noise components:

k(xi,xj) = σ2
f · kMatern(xi,xj | ℓ, ν)︸ ︷︷ ︸

Spatial Risk Structure

+ σ2
n · δij︸ ︷︷ ︸

Base Observation Noise
(20)

The core spatial structure of the risk field is modeled using
a scaled Matern kernel (σ2

f · kMatern). The Matern kernel, with
smoothness parameter ν = 1.5, was chosen for its flexibility,
allowing representation of continuous risk patterns that are
potentially less smooth than assumed by alternatives like the
RBF kernel, simulating realistic variations in factors like bird
density near airport features. ℓ = [ℓx, ℓy, ℓz] enables the
model to learn different spatial correlation ranges horizontally
versus vertically, capturing the distinct structure of the airport
runways and aircraft corridors environment. The overall ex-
pected variance of spatial risk fluctuations around the mean is
controlled by the signal variance parameter σ2

f .

Variability in the training target risk scores (yi) not captured
by the smooth spatial structure is addressed by a White Kernel
component (σ2

n ·δij), which models a baseline level of spatially
independent observation noise. This noise component accounts
for uncertainty and jitter originating from sources such as the
Monte Carlo sampling process used to derive yi (Sec. II-C2),
underlying historical data stochasticity, and Kalman filter esti-
mation errors associated with the input positions (Sec. II-B1).
Additionally, to ensure the model adapts dynamically to chang-
ing bird activity over time, a temporal weighting heuristic
(detailed in Sec. II-D3) is applied during model fitting. This
heuristic effectively increases the observation noise variance
attributed to older training points, reducing their influence and
allowing the GP risk map to prioritize recent data reflecting
current bird distributions and associated risks.

This composite kernel structure allows the GP to learn
complex spatial dependencies using the flexible Matern kernel,
account for observation noise in the training data via the White
Kernel, and dynamically adapt to new information through the
temporal weighting mechanism, providing an effective model
for the time-varying spatial bird strike risk field.

2) Training Data Generation: The GP model is trained
using data points (xi, yi) generated dynamically from the
simulation outputs. For each relevant bird track, the input
location xi ∈ R3 corresponds to the position estimated by
its Kalman filter. The associated target value yi represents a
scaled estimate of the risk level at that location and time. This
target yi is derived by: (1) querying the pre-computed posterior
Beta distributions (Sec. II-C1) relevant to the bird’s estimated
context (species group, family, time); (2) performing Monte
Carlo sampling (Sec. II-C2) from these distributions to obtain
an expected probabilistic risk score based on historical damage
data; and (3) linearly scaling this probability score pi ∈ [0, 1]
by a fixed constant factor (SGP ≈ 2.5) to obtain the final
target value yi = pi · SGP used for GP model training.

3) Sequential Updates and Temporal Adaptation: To en-
able the GP-based risk map to adapt to dynamic changes in
bird distributions, the model is updated sequentially as new
batches of training data (derived from recent bird tracks)
become available. This avoids computationally prohibitive
retraining on the entire observation history. To manage the
O(N3) complexity of GP fitting with N data points, a fixed-
size history buffer stores the training data, with older or
less relevant points being pruned when the buffer capacity is
reached.

A temporal weighting heuristic is applied to prioritize
recent observations. The effective observation noise variance
associated with each training point (xi, yi) in the buffer is
increased based on its age at each discrete time step ∆ti. This
is achieved by adding an age-dependent term αi (calculated
using an exponential decay function αi ∝ 1 − exp(−λ∆ti),
bounded between minimum and maximum values) to the
diagonal of the kernel matrix during GP fitting. Consequently,
older data points exert less influence on the posterior distri-
bution compared to recent ones. This procedure is akin to
discounting (power-prior) weighting of older observations. The
GP is then refit using the current data buffer and these age-
adjusted effective noise levels, producing an updated posterior
risk map that indicates the most current understanding of the
environment while systematically reducing the influence of
past observations.

4) Probabilistic Prediction and Risk Assessment: Once
trained, the GP provides predictions not just as single values,
but as full probability distributions over the possible risk score
f∗ at any query location x∗. Conditioned on the training data
D, this posterior predictive distribution is Gaussian, denoted
f∗|x∗,D ∼ N (µ(x∗), σ

2(x∗)). The mean µ(x∗) represents
the most likely risk score (point estimate), while the variance
σ2(x∗) quantifies the uncertainty associated with this predic-
tion.

Utilizing this predictive distribution enables probabilistic
assessments. For example,the probability that the risk f∗ at x∗
exceeds a threshold T can be computed using the predicted
mean µ(x∗) and standard deviation σ(x∗) with the standard



normal cdf (Φ):

P
(
f∗ ≥ T | x∗,D

)
= 1− Φ

(
T−µ(x∗)
σ(x∗)

)
(21)

E. Flight Path Risk Evaluation

To translate the spatial risk map into operationally relevant
metrics, the framework evaluates the integrated probabilistic
risk along predefined flight paths (aircraft approach/departure
corridors). Each path is discretized into a sequence of query
points xpath.

At each query point, the current posterior predic-
tive distribution from the trained GP model (Sec. II-D),
N (µ(xpath), σ

2(xpath)), is obtained. From this distribution,
point-wise metrics including the expected risk score µ(xpath),
predictive uncertainty σ(xpath), and the probabilities of ex-
ceeding risk thresholds (P (f∗ ≥ TMedium), P (f∗ > THigh)) are
calculated as described in Sec. II-D4.

Point-wise probabilistic assessments are aggregated along
the path to derive metrics such as average expected risk score,
maximum expected risk score, average predictive standard
deviation, and average threshold exceedance probabilities,
providing quantitative, uncertainty-aware information that can
be utilized to compare the relative risk of different flight
corridors under specific environmental conditions.

III. EVALUATION & RESULTS

The results discussed below ( Fig. 1) originate from a
specific Spring season scenario simulation. Key parameter for
this simulation are summarized to provide context:

• Environment, Flight Paths, and Duration: The sim-
ulation was conducted within a 3D airport vicinity
(X,Y ∈ [−5, 5] km, Altitude Z ∈ [0, 3] km) including
four predefined flight corridors used for risk evalua-
tion, depicted in risk maps (e.g., Fig. 2): Approach 09
(APP09, western approach, dashed blue line), Departure
27 (DEP27, eastern departure, solid green line), Approach
18 (APP18, southern approach, dashed blue line), and
Departure 36 (DEP36, northern departure, solid green
line). The simulation duration was 30 iterations, each
representing a 10 s time step (∆t).

• Initial State: Nbirds = 15 birds based on the FAA
bird strike dataset were initialized including Goose (4),
Duck (4), Small Bird (4), Gull (2), and Hawk (1), with
randomized positions .

• Bird Tracking: Kalman filters estimated bird position
and velocity using simulated observations from a 5-radar
network (8-10 km range, 30-40m accuracy). Tracking
proved reliable, with average Kalman filter position error
stabilizing below 10m.

• Probabilistic Risk Inputs: The framework utilized
historical FAA bird strike data analysis (Sec. II-C)
and Monte Carlo sampling (NMC = 500). Core risk
parameters included: baseline log-odds=-2.5, proximity
scale=+2.0, species scale=1.0, and temporal scale=0.8.

• Spatial Risk Model (GP): A Gaussian Process mapped
risk across a 0.2 km resolution grid. It utilizes a com-
posite Matern kernel (ν = 1.5, anisotropic lengths
ℓ = [0.8, 0.8, 0.4] km) and a White kernel for noise.
Target risk values for the GP were derived from scaled
probabilities (SGP = 2.5).

• GP Adaptation Mechanism: A critical setting was the
slow temporal decay constant of 24 hours for the GP’s
sequential updates, managed with a 1000-point history
buffer. This allowed the GP to maintain a longer memory
of past risk patterns compared to faster decay settings.

A. Simulation Results: Spring Scenario

(a) Kalman filter position error vs. time
step (m)

(b) Average Path Risk Probability
(P(≥Medium))

Fig. 1. Simulation results for the Spring scenario: (a) Kalman filter position
estimation error over time, demonstrating tracking accuracy. (b) Evolution of
average path risk probability (P(Risk≥Medium)) for approach and departure
corridors, showing dynamic risk assessment.

B. Spatial Risk Map Evolution (Spring Scenario)

The simulation results for the Spring scenario highlight the
framework’s dynamic capabilities and the performance of its
components. Figure 1a displays the Kalman filter (KF) position
estimation error over the 30 simulation steps. After an initial
convergence period within the first five steps, where the max-
imum error decreases sharply from over 55m to below 20m,
the average estimation error stabilizes at a low level, consis-
tently remaining below 10m. The maximum error exhibits
more variability, fluctuating mostly between 10-20m, likely
indicating instances of higher measurement noise from the
simulated sensors. This demonstrates that the Kalman filters
provided robust and accurate bird state estimates throughout
the simulation, serving as a reliable input to the subsequent
risk mapping stage.

Complementing the state estimation performance, Figure 1b
shows the evolution of the average probability of encounter-
ing medium-or-high risk (P(Risk>=Medium)) along the four
predefined flight paths, as estimated by the Gaussian Process
(GP) risk map. A rapid increase occurs initially, with all
paths reaching probabilities between 0.7 and 1.0 by step 5,



(a) Iteration 5 (σ = 0.369) (b) Iteration 10 (σ = 0.287) (c) Iteration 15 (σ = 0.296)

(d) Iteration 20 (σ = 0.262) (e) Iteration 25 (σ = 0.247) (f) Iteration 30 (σ = 0.207)

Fig. 2. Evolution of the GP spatial risk map (P (Risk≥Medium) at altitude z = 0.5 km) during the Spring scenario at selected iterations. Estimated bird
positions (black circles) and recent movement trails (yellow–purple dotted lines) influence the contours. Subcaptions report the mean predictive standard
deviation over the slice.

indicating an immediate high-risk assessment based on early
bird locations. Notably, the risk dynamics diverge significantly
after approximately step 15. While the approach paths (APP09
and APP18) maintain very high average risk probabilities (gen-
erally >0.85), the departure paths exhibit a clear downward
trend. Specifically, Departure 27 decreases to around 0.7, and
Departure 36 shows a more pronounced decline, falling below
0.4 by the end of the simulation (step 30). This divergence,
occurring despite the stable KF performance shown in Fig. 1a,
indicates that the adaptive GP risk map, influenced by the
slow (24 hour) temporal decay setting, successfully captured
changes in the simulated spatial distribution of birds relative to
different flight corridors over time. The framework effectively
learned that the risk profile associated with departure paths
diminished significantly in the latter half of this specific Spring
scenario run, while approach paths remained high-risk areas.

The dynamic nature of the risk assessment is highlighted
by the sequence of spatial risk map slices presented in Fig. 2.
These maps show the evolution of P(Risk>=Medium) at an
altitude of z = 0.5 km for selected iterations (5, 10, 15, 20,
25, and 30) during the Spring simulation run. The underlying
GP model’s spatial risk distribution is directly influenced by
the estimated bird positions (black circles with green ’x’) and
their recent movement history (yellow-to-purple dotted trails,

increasingly visible in Fig. 2d through 2f). The Mean Map
Uncertainty (StdDev) value in each plot indicates the GP’s
overall predictive confidence across the displayed 2D slice.
The GP predicts both a mean risk score µ(x∗) and a predictive
variance σ2(x∗) (standard deviation σ(x∗)) at each grid point
x∗, this value represents the average of the predictive standard
deviations (mean(σ(x∗))) calculated over all points in the
specific map slice for that iteration. A lower value indicates
higher average confidence (lower average uncertainty) in the
GP’s predictions across the spatial domain at that time step.

Consistent with the rapid initial increase observed in the
path risk probabilities (Fig. 1b), the early risk maps (Fig. 2a
and Fig. 2b) highlight formation of widespread high-risk areas
(dark red, P>0.75), predominantly along the aircraft approach
and departure corridors. These initial hotspots correlate closely
with the clusters of estimated bird positions near runway cen-
terlines and path endpoints. During this phase, the Mean Map
Uncertainty decreases substantially (from 0.369 at step 5 to
0.287 at step 10), indicating the GP quickly learning the initial
high risk configuration based on these early observations.

The evolution of the risk maps (Fig. 2c through Fig. 2f)
visually confirms the risk divergence previously identified
in the path risk plot (Fig. 1b). While high risk (P>0.75)
generally persists along the aircraft approach corridors



(APP09 and APP18), corresponding to continued simulated
bird presence near those areas, the risk intensity along the
departure corridors (DEP27 and especially DEP36) noticeably
diminishes over time. This can be inferred when comparing
Fig. 2c to Fig. 2f, where the latter shows significantly lower
risk probabilities (lighter orange/yellow) along the DEP36
corridor. This spatial differentiation demonstrates the GP
effectively adapting to the simulated dynamics; as birds
moved away from departure areas (visible from trails and
changing positions), the temporal weighting heuristic reduced
the influence of older data points, allowing the risk map to
reflect the lower risk hazard in those zones based on more
recent inputs. As the simulation progresses towards iteration
30 (Fig. 2f), while risk decreases in bird vacated areas, the
remaining high-risk contours around the aircraft approach
paths become spatially tighter and more concentrated
compared to iteration 25 (Fig. 2e). This likely indicates the
GP gaining confidence (Mean Map Uncertainty dropping
from 0.247 to 0.207 between these steps) specifically around
the current bird locations, leading to steeper risk gradients
immediately surrounding these persistent clusters.

The sequence of risk maps (Fig. 2) demonstrate the
Bayesian framework’s effectiveness. It effectively translates
the discrete and uncertain bird position estimates derived from
the Kalman filters into a continuous spatial risk field where
predictive uncertainty is quantified via the Gaussian process.
These dynamic maps provide spatial context for interpreting
the aggregated path risk metrics (Fig. 1b), visualizing how
the framework captures the time-varying nature of simulated
bird distributions and the resulting concentration of risk around
persistent bird locations within critical airport airspace envi-
ronment.
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