
Dynamic Resource Aware Task Scheduling for
Mobile Edge Cloud Computing

Indrajeet Roy
College of Engineering
Northeastern University

Boston, MA, United States
roy.i@northeastern.edu

Ajith Kalpathi Ganesh
College of Engineering
Northeastern University

Boston, MA, United States
kalpathiganesh.a@northeastern.edu

Abdulrazaq Surakat
College of Engineering
Northeastern University

Boston, MA, United States
surakat.a@northeastern.edu

Abstract—This paper presents an enhanced implementation
of the Mobile Cloud Computing (MCC) task scheduling al-
gorithm originally proposed by Lin et al.[1] in Energy and
Performance-Aware Task Scheduling in a Mobile Cloud Com-
puting Environment. Although the original algorithm effec-
tively optimized energy consumption under strict completion
time constraints, its reliance on static power models, fixed net-
work conditions, and predetermined task characteristics limited
its real-world applicability. Our implementation addresses these
limitations by integrating dynamic power profiles that adjust
to varying device states, modeling realistic network conditions
with throughput fluctuations, and adapting task attributes
to simulate computational complexity and data intensity. In
addition, we extend Lin’s binary device-cloud architecture
into a three-tier framework that incorporates edge computing
resources, providing additional offload options with various
energy-performance trade-offs. To further enhance decision-
making, we employ a Q-learning approach for task migration,
which adaptively explores the solution space to identify optimal
offloading patterns. In general, our approach bridges the gap
between theoretical MCC scheduling algorithms and practical
requirements, enabling efficient energy-efficient task offloading
across a range of device power states, network conditions, and
computational loads without sacrificing algorithmic efficiency.

I. INTRODUCTION

Mobile Cloud Computing (MCC) augments the limited
computational, storage, and battery resources of handheld
devices by offloading tasks to remote servers. As applica-
tions such as real-time object recognition and on-device
language models become prevalent, task placement decisions
must optimize across three competing objectives: energy
consumption, execution latency, and deadline satisfaction.
This optimization is complex, requiring consideration of task
dependencies, computational demands, network conditions,
and device power states while ensuring application deadlines
are met.

Lin et al.[1] introduced a two-phase scheduler for energy
and performance-aware task offloading in a binary device-
cloud setting. Their approach first generates a minimal-delay
schedule using a HEFT-inspired algorithm, then iteratively
migrates tasks between device and cloud to minimize energy
consumption while respecting deadline constraints. Although
effective in controlled settings, their approach relies on sim-

plifying assumptions such as static power models, constant
bandwidth, and binary execution options that limit its practi-
cal applicability.

Edge computing provides additional options for the task
offloading set. Edge devices, positioned closer to end users
than traditional cloud datacenters, provide an intermediate
execution tier that reduces latency compared to cloud only
solutions while typically consuming less energy than local
execution. This three-tier architecture introduces new trade-
offs and significantly expands the scheduling solution space
beyond Lin et al.[1]’s binary model. We present three key
extensions to Lin’s MCC task scheduling algorithm:

• Dynamic resource modeling: Static power models
are extended with dynamic profiles that account for
device operating states, core-frequency scaling, and
workload-dependent power consumption. Network con-
ditions are modeled using time-varying bandwidth and
signal-strength-dependent energy costs.

• Three-Tier Model Integration: The binary device–cloud
scheduler is extended to incorporate edge servers, per-
mitting task placement on the mobile device, an edge
node, or the cloud. The original two phase procedure
delay optimal initial scheduling followed by energy fo-
cused migration is adapted to the expanded architecture,
enabling offloading strategies that utilize the low-latency
and moderate-energy characteristics of edge resources.

• Alternative Optimization Strategies: To efficiently
explore the expanded solution space, two refinement
approaches are implemented and compared for the
energy-optimization phase:
– A heuristic migration strategy extended to three tiers,

which deterministically selects task migrations based
on estimated energy/time improvements.

– A reinforcement learning (Q-learning) migration strat-
egy, which adaptively explores migration decisions
across diverse task graphs and operating conditions to
learn policies that may outperform fixed heuristics in
complex, dynamic scenarios.

II. RELATED WORK

Prior work in mobile cloud computing (MCC) cov-
ers dynamic resource modeling, edge computing, and
reinforcement-learning-based task offloading. Lin et al. [1]
introduced a two-phase scheduling algorithm that employs
static power models and a binary device–cloud architec-
ture. Subsequent studies refined task scheduling under
MCC—Guo et al. [5] explored workflow-based offloading,
and Wu et al. [6] added context awareness—but none ex-
tended the model to a three-tier device–edge–cloud environ-
ment.

Power modeling has evolved from simplistic constant-power
approaches to sophisticated state-dependent models. Car-
roll and Heiser [7] conducted empirical measurements of
smartphone power consumption, while Huang et al. [8] char-
acterized energy impacts of different network interfaces
under variable conditions. Our dynamic resource models
incorporate these insights with battery-level sensitivity and
workload-dependent energy estimation. Edge computing
has transformed mobile offloading from binary decisions to
multi-tier architectures. Satyanarayanan et al. [9] introduced
cloudlets as trusted, resource-rich computers available for
nearby mobile devices, while Shi et al. [10] defined edge
computing as computation occurring at the network edge.
Our three-tier extension builds on these concepts while ad-
dressing algorithmic challenges of task scheduling across
heterogeneous tiers.

For decision optimization, Tang and Wong [2] applied deep
reinforcement learning to task offloading in edge computing
systems, demonstrating adaptability to changing conditions.
Huang et al. [11] developed distributed reinforcement learn-
ing for multi-user computation offloading. Our Q-learning
approach specifically targets energy-time trade-offs in multi-
tier environments, integrating reinforcement learning as an
enhancement to a proven algorithmic framework.

Task characterization has evolved from simplified execution-
time models to nuanced representations. Wang et al. [12]
and Flores et al. [13] established taxonomies based on com-
putational and data intensity, informing offloading policies.
Our approach incorporates these insights while adding dy-
namic attributes that drive tier-specific offloading decisions
for compute-intensive, data-intensive, and balanced tasks.

III. FOUNDATIONAL ENERGY AND
PERFORMANCE-AWARE TASK SCHEDULING ALGORITHM

Lin et al.[1]’s two-phase task-scheduling algorithm for Mo-
bile Cloud Computing (MCC) serves as the baseline. The
following section summarizes the original system model,
formalizes the problem, and reviews the scheduling method-
ology, while identifying limitations that motivate the exten-
sions introduced in this paper.

A. System Model and Problem Formulation

Lin et al.[1] modeled an application as a directed acyclic
graph (DAG) G = (V,E), where each node vi ∈ V represents
a task and each directed edge (vi, vj) ∈ E imposes a prece-
dence constraint requiring task vi to complete before task vj
can start. The execution environment consists of a mobile
device with K heterogeneous local cores and a remote cloud
with virtually unlimited computational resources, enabling
task offloading and increased parallelism.

The energy consumption model proposed by Lin et al.[1]
splits the device’s energy into three parts:

• Local-execution energy

Edevice
i = Pk T

l
i,k,

where Pk is the constant power draw of core k and T l
i,k is

the time required to execute task vi on that core.

• Offloading energy

ERF
i = Pd2c T

s
i , T s

i =
dsend
i,d2c

reff(d2c)
,

where Pd2c is the RF-transmitter power, dsend
i,d2c is the

input-data size (bytes), and reff(d2c) is the effective up-
link rate. (Energy for receiving the result is included in
background overhead and is not modeled separately.)

• Cloud-computation energy Computation energy on the
cloud is treated as zero from the mobile device’s perspec-
tive.

The total energy consumed by the mobile device, Etotal,
aggregates individual task energies based on their respective
execution assignments (local core or cloud offloading):

Etotal =
∑
vi∈V

Edevice
i , if tier(vi) = DEVICE

ERF
i , if tier(vi) = CLOUD

The scheduling problem formulated by Lin et al.[1] chooses,
for each task vi ∈ V , both an execution location and sched-
ule to minimize the total mobile-device energy Etotal, sub-
ject to:

1) Precedence Constraints: ∀ (vi, vj) ∈ E, task vj cannot
start until vi has completed and its results are available.

2) Deadline Constraint: The makespan

Ttotal = max
vi∈exit tasks

{
max

(
FT l

i , FTwr
i

)}
must satisfy Ttotal ≤ Tmax, where FT l

i is the finish time
if vi runs locally, and FTwr

i is the finish time when vi is
offloaded (including round-trip transmission).

Solving the problem entails three scheduling decisions:

(i) Task placement—determine for each task whether it
executes on the mobile device or is offloaded to the
cloud.

(ii) Core assignment—map locally executed tasks to the
heterogeneous cores available on the device.

(iii) Start-time scheduling—select the exact start time
on the assigned resource, i.e., a local core or the
device-to-cloud communication channel.

1) Phase 1: Initial Scheduling (Minimal Makespan):
The goal of this phase is to generate a valid task schedule
with the smallest possible makespan Ttotal, satisfying the
deadline Tmax. In practice, Tmax is set equal to this minimal
makespan. The procedure is based on the HEFT algorithm
and consists of three steps:

1) Primary Assignment (Local vs. Cloud). Assign each
task vi to the cloud if its estimated remote execution
time

T est
i,cloud = T s

i + T c
i + T r

i

(upload + compute + download) is less than its minimal
local execution time

T est
i,device = min

k
T l
i,k.

2) Task Prioritization (Rank). Compute an upward rank
for each task vi:

rank(vi) = wi + max
vj∈succ(vi)

rank(vj),

where

wi =


1

K

K∑
k=1

T l
i,k, if vi is local,

T est
i,cloud, if vi is remote.

Higher rank values indicate tasks on the critical path.

3) Execution-Unit Selection. Tasks are scheduled sequen-
tially in descending order of their computed priorities.
For each available execution resource (local cores k and
the cloud), the Earliest Start Time (EST) and Earliest
Finish Time (EFT) are computed, ensuring adherence to
task precedence constraints:

EST (vi, k) = max

{
RT l

i , FATcore(k), max
vj∈pred(vi)

FTfinal(vj)

}

EST (vi, C) = max

{
RTws

i , FATws, max
vj∈pred(vi)

FTfinal(vj)

}

RT l
i and RTws

i represents the earliest times task vi
can start locally or begin uploading data to the cloud.
FATcore(k) and FATws represent the finish available times
for the respective resources. FTfinal(vj) represents the
effective finish time of predecessor tasks, accounting for
the location of their results. The resource providing the
lowest EFT is selected for scheduling task vi.

2) Phase 2: Energy Reduction (Task Migration): Phase 2
minimizes the total energy consumption Etotal of the
Phase 1 schedule while enforcing the makespan constraint
Tmax. Starting from a minimal-makespan schedule (i.e.,
Ttotal ≤ Tmax), tasks are iteratively migrated to alterna-
tive execution units to reduce Etotal without exceeding the
deadline.

This process consists of four main steps:

1) Migration Evaluation: The algorithm evaluates potential
migrations of tasks initially assigned to local cores, con-
sidering two migration types: (i) from one local core to
another (potentially more energy-efficient) local core, and
(ii) from a local core to the cloud.

2) Selection Criteria: During each iteration, the algorithm
selects the most beneficial migration based on energy
savings and makespan implications. The decision follows
a two-tier criterion:

(i) Migrations that yield the highest energy reduction
(∆E = Ebefore − Eafter) without increasing the current
makespan (Ttotal) are given priority.

(ii) If no migrations satisfy the first criterion, the migra-
tion that maximizes the energy-to-time improvement
ratio (∆E/(Tafter − Tbefore)) is selected, provided the
updated schedule remains within the allowed deadline
(Ttotal ≤ Tmax).

3) Linear-Time Rescheduling: After identifying the opti-
mal migration candidate, a linear-time kernel routine (i.e.,
O(|V |), where |V | is the total number of tasks) updates
the existing schedule by adjusting the sequences of tasks
on the affected execution units and recalculating their
start and finish times.

4) Iteration and Convergence: Steps 1 through 3 are re-
peated iteratively until no further beneficial migrations
can be identified that adhere to the original makespan
constraint Tmax.

B. Limitations of the Original Approach

Although Lin et al.’s[1] algorithm establishes a baseline for
energy and performance aware task scheduling in MCC,
its reliance on static assumptions limits effectiveness under
dynamic mobile cloud computing operating conditions:

• Static Power Consumption Model: The original method
assumes constant power parameters (Pk, Pd2c) for device
cores and wireless transmission. In practice, device power
consumption varies with battery state, CPU-frequency
scaling, and workload characteristics,making the static
model inaccurate and inflexible.

• Constant Network Condition Assumption: Lin et al.’s
algorithm uses fixed network parameters—constant com-
munication rates reff(d2c), reff(c2d)—and static transmis-
sion energy costs, which do not simulate real-world wire-

less conditions where throughput, latency, and power con-
sumption vary with signal strength, congestion, mobility,
and interference.

• Binary Architectural Constraint: The original frame-
work considers only a two-tier (device-cloud) architecture
and omits edge computing, which can offer lower latency
than cloud and lower energy costs than local execution,
providing effective intermediate offloading options.

• Simplified Task Characterization: The original model
considers only execution times (T l

i,k, T c
i) and ignores key

factors such as computational complexity (CPU-bound
vs. I/O-bound), data intensity (transfer volume), and per-
task communication overhead that critically influence
offloading decisions.

IV. DYNAMIC RESOURCE MODELING

The proposed framework addresses the limitations of static
resource models by integrating dynamic models that accu-
rately simulate variability in real-world mobile computing
scenarios.

A. Mobile Device Power Consumption Modeling

In comparison to Lin et al.’s[1] static power model, the
framework utilizes dynamic, state-dependent, load-aware
power models for mobile devices.

Mobile Device Core Power Model: The power consump-
tion of a specific mobile device core k is modeled as

Pk = (bk + ck · load) bf,

where bk is the baseline idle power, ck is the incremental
active power coefficient, load ∈ [0, 1] is the normalized
utilization, and bf is the battery-state scaling factor.

Mobile Device Battery-Level Sensitivity: Battery charge
levels significantly impact mobile device power efficiency,
especially at lower charge states.This sensitivity is modeled
using a multiplicative battery scaling factor bf , which ad-
justs both idle and active power consumptions for all cores
and RF components as follows:

bf =

1.0, if B > 30

1.0 + 0.01× (30−B), if B ≤ 30

where B represents the current battery level. This simulated
up to a 30% increase in power consumption as the battery
level drops below 30%, modeling real-world power ineffi-
ciencies at low battery states.

The proposed implementation models a big.LITTLE architec-
ture with three core classes—high-performance, mid-range,
and efficiency—each exhibiting distinct power–performance
trade-offs. These differentiated profiles enable energy-aware
scheduling by assigning tasks to cores based on their com-
putational demands and the battery-scaling factor bf . Table I
summarizes the power model parameters for each core class.

TABLE I: Core power models differentiated by performance
class.

Core Class Base idle (W) Total Power Expression

High-performance 0.10 (0.10 + 0.20 + 1.80 load) bf

Mid-range 0.05 (0.05 + 0.10 + 1.40 load) bf

Efficiency 0.03 (0.03 + 0.05 + 0.95 load) bf

B. Mobile Device RF Transmission Power Modeling

The framework defines RF power consumption models for
device-to-edge and device-to-cloud transmissions, simulating
realistic variations due to available bandwidth, and signal
strength. r represents the data rate (Mbps), s the signal
strength (dBm), bf the battery-scaling factor, and reff the
RF circuit efficiency. The models are given by

Pd2e =
bf

reff

[
0.1 + 0.4

r

10

(
1 + 0.02 (70− s)

)]
Pd2c =

bf

reff

[
0.15 + 0.6

r

5

(
1 + 0.03 (70− s)

)]
These models extend beyond the constant transmission
power assumption in Lin et al.[1], enabling a more detailed
simulation of mobile RF energy consumption. The coeffi-
cient values are derived from empirical measurements and
vendor specifications to simulate realistic operating condi-
tions:

• Baseline Offsets (0.1 for device-to-edge, 0.15 for
device-to-cloud): Simulates the RF transceiver’s idle
power and control-plane overhead during connected
standby (beacon signaling, channel maintenance, hand-
shakes) even when little or no user data are sent. Es-
sentially, the keep-alive cost of staying attached to the
network.

• Data-Rate Scaling Factors (0.4 for device-to-edge,
0.6 for device-to-cloud): Simulates the additional RF
power demanded by higher throughput.The coefficients
convert requested data rate into the incremental power
budget, with the larger cloud value reflecting the higher
effective-isotropic-radiated-power (EIRP) and modulation
complexity of wide-area links.

• Signal-Strength Adjustment Factors (0.02 for
device-to-edge, 0.03 for device-to-cloud): Model auto-
matic transmit-power-control (TPC) responses to path
loss and fading. These factors represent the extra power
required to maintain the target signal-to-noise ratio as
received-signal strength degrades, with the larger cloud
coefficient accounting for longer propagation distances and
harsher transmission environments.

The RF power models explicitly differentiate between
short-range edge offloading and long-range cloud transmis-
sions, enabling the scheduler to generate more accurate and
realistic energy-cost estimates for task migration decisions.

C. Edge Device and Cloud Server Power Modeling

Load-dependent power consumption models are utilized
for edge devices and cloud servers to simulate hardware
heterogeneity and dynamic utilization characteristics.

1) Edge Server Power Model: Power consumption for
each edge server node m ∈ {1, . . . ,M} and each core
c ∈ {1, . . . , Cm} is defined by assigning a core-specific effi-
ciency factor, efficiencym,c, modeling hardware diversity:

efficiencym,c = max (0.5, [1.0− 0.05(m− 1)− 0.02(c− 1)]× δ) ,

where δ ∼ U(0.9, 1.1) introduces a small random variation,
and the linear terms represent gradual efficiency degradation
across edge devices and cores. A lower bound of 0.5 ensures
realistic operational limits.

From this, a power scaling factor is defined as:

κm,c =
1.0

efficiencym,c

,

where higher values correspond to lower efficiency (higher
power consumption). The power consumption of each edge
core is computed as:

Pedge(m, c, ℓ) = Pidle(m, c) + Pdynamic(m, c, ℓ),

where:

Pidle(m, c) = 5.0× κm,c,

Pdynamic(m, c, ℓ) = (3.0 + 12.0 ℓ)× κm,c,

with ℓ ∈ [0, 1] representing normalized core utilization.

The numerical coefficients used in the models simulate stan-
dard server benchmarks and typical industry data:

• Edge idle power baseline (5.0 W): Simulates low-power
edge hardware commonly deployed in close-proximity
infrastructures.

• Edge dynamic power scaling (3.0 + 12.0 ℓW): Simulates
realistic edge-server CPU power consumption ranges from
idle (minimal load) to maximum load scenarios, consistent
with low-to-medium performance edge CPUs.

2) Cloud Server Power Model: Cloud servers are modeled
as high-capacity infrastructure, with increased idle power
consumption and load-dependent scaling.The power model
is:

Pcloud(ℓ) = Pidle(cloud) + Pdynamic(cloud, ℓ),

where:

Pidle(cloud) = 50.0,

Pdynamic(cloud, ℓ) = 20.0 + 180.0 ℓ,

and ℓ ∈ [0, 1] representing normalized utilization.

The numerical coefficients used in the models simulate stan-
dard server benchmarks and typical industry data:

• Cloud idle power (50.0 W): Simulates a typical idle power
draw for standard dual-socket cloud servers according to
SPECpower benchmarks.

• Cloud dynamic power scaling (20.0 + 180.0 ℓW): Simu-
lates realistic incremental power consumption for cloud
servers, scaling with workload intensity and aligning with
standard 2-socket high-performance CPU server configura-
tions.

These parameter values enable accurate, realistic evaluation
of task-offloading strategies in the three-tier MCC frame-
work, addressing the limitations imposed by the static and
simplified modeling assumptions.

D. Network Variability Modeling

Lin et al.’s[1] model assumes fixed communication rates,
which fails to capture real-world bandwidth fluctuations
and congestion. The proposed framework defines separate
upload and download base rates rbase,up(ℓ), rbase,down(ℓ) for
each link type ℓ in the three-tier architecture. Table II lists
example values.

TABLE II: Base upload/download bandwidths for link types

Link type ℓ rbase,up(ℓ) [Mbps] rbase,down(ℓ) [Mbps]

Device → Edge (d2em) 10 12
Device → Cloud (d2c) 5 6
Edge ↔ Edge 30 30
Edge → Cloud 50 60

Device → Edge links: Represent short-range connectiv-
ity (e.g., Wi-Fi, local 5G microcell) between a mobile de-
vice and a nearby edge server. Uplink speeds are modeled
slightly lower than downlink to reflect common access-point
asymmetry.

Device → Cloud links: Model wide-area cellular or public
internet connections from the mobile device to a remote
cloud data center. These links exhibit lower uplink through-
put (e.g., due to shared spectrum and ISP traffic shaping)
compared to local offloading paths.

Edge ↔ Edge links: Simulates high-capacity, symmetric
backhaul connections (e.g., fiber or metro Ethernet) intercon-
necting edge nodes supporting low-latency, peer-to-peer task
migration.

Edge → Cloud links: Simulates network links between
edge infrastructure and central cloud regions to accommo-
date high symmetric bandwidth bulk data exchange and
inter-datacenter synchronization.

By distinguishing these link types and their characteristic
rates, the scheduler selects the appropriate parameters for
each offloading path, improving the accuracy of transfer
time and energy cost estimates under heterogeneous, time
varying network conditions.

Scenario Scaling: A global bandwidth scaling factor
fBW is applied to each base rate to simulate different
network-quality scenarios:

reff(ℓ) = fBW rbase(ℓ).

Values fBW > 1 simulate favorable conditions (e.g., 5G or
wired backhaul), while fBW < 1 represent degraded environ-
ments. This approach enables simulation across a range of
network states without modifying link-specific parameters.
In the three-tier architecture, distinct base bandwidths are de-
fined for device–edge (d2em), edge–cloud, and device–cloud
(d2c) links. Scaling these rates by fBW simulates symmetric
and asymmetric variations, allowing the scheduler to oppor-
tunistically exploit higher-bandwidth paths. Such dynamic
network modeling is critical for the design and evaluation of
effective scheduling strategies in MCC environments.

E. Task Characterization

Lin et al.’s[1] original model characterizes each task only
by its execution times (T l

i,k, T c
i), ignoring important factors

that affect offloading efficiency. The proposed framework
augments task representations with:

• Computation Category: Classifies tasks as compute-
bound, data-bound, or balanced, enabling the scheduler to
prioritize appropriate resources for each task type. This
differentiation allows compute-intensive tasks to be di-
rected to high-performance cores or cloud resources, while
keeping data-intensive tasks closer to their data sources to
minimize transfer overhead.

• Data Payload Size: Quantifies the input/output data vol-
umes for each task, allowing precise calculation of energy
and time costs for data transfers. This enables the sched-
uler to make intelligent tradeoffs between local execution
(avoiding transfer costs) and remote execution (gaining
computational benefits) based on actual data requirements.

• Communication Overhead: Models path-specific transfer
times based on data sizes and bandwidth rates for each
network link, enabling the scheduler to account for het-
erogeneous network conditions when making migration
decisions. This enhances energy efficiency by avoiding
costly transfers over constrained or power-hungry chan-
nels.

These heterogeneous attributes collectively enable more
accurate, context-aware scheduling that dynamically adapts
to both the computational nature of tasks and the current
state of the three-tier network environment.

Tasks are classified into three categories—Compute-Intensive,
Data-Intensive, and Balanced. Categories are assigned prob-
abilistically according to P (Compute) = 0.3, P (Data) =

0.3, P (Balanced) = 0.4, to simulate mixed application
workflows. Examples include encryption and image process-
ing for Compute-Intensive tasks, and database queries and
large file transfers for Data-Intensive tasks.

Task Attributes: Complexity and Data Intensity: Each task vi
carries two stochastic attributes:

• Computational complexity complexity(vi) ∈ [γmin, γmax]

• Data intensity intensity(vi) ∈ [δmin, δmax]

Task class complexity(vi) range intensity(vi) range

Compute-Intensive [0.7 γmax, γmax] [δmin, 2 δmin]

Data-Intensive [γmin, 2 γmin] [0.7 δmax, δmax]

Balanced [γmin, γmax] [δmin, δmax]

• Task specialization classification:
For compute-intensive tasks, complexity(vi) ∼
U
[
0.7 γmax, γmax

]
; for data-intensive tasks,

intensity(vi) ∼ U
[
0.7 δmax, δmax

]
. This ensures

compute-heavy tasks typically demand more CPU than
balanced or data tasks of equal size, and vice versa.

• Offloading incentive structure:
The non-dominant attribute is drawn from its lower range:
intensity(vi) ∼ U

[
δmin, 2 δmin

]
for compute tasks, and

complexity(vi) ∼ U
[
γmin, 2 γmin

]
for data tasks.

– CPU-heavy tasks incur low transmission cost but high
local compute cost, promoting offloading when band-
width permits.

– Data-heavy tasks incur low compute cost but high trans-
mission cost, favoring local or edge execution under
limited uplink.

• Energy–delay scaling alignment:
The 30%/70% splits keep attribute multipliers within the
linear regions of the mobile-core power model Pk and
the RF-energy models (Pd2e, Pd2c), ensuring proportional
scaling of simulated energy and delay without saturating
either model.

By sampling tasks as either strongly CPU-bound or strongly
data-bound, the scheduler receives clear energy-versus-delay
trade-off signals, simplifying evaluation of the three-tier of-
floading logic and preventing mixed workloads from obscur-
ing validation of the dynamic power and network models.

V. THREE-TIER HEURISTIC EXTENSION

This section extends Lin et al.’s[1] two-phase scheduling
algorithm to a three-tier (device–edge–cloud) architecture.
The heuristic framework employs the dynamic resource mod-
els from Section IV and minimizes mobile-device energy
consumption Etotal under the makespan constraint Tmax. The
algorithm retains the original two phases:

(i) Makespan minimization: A HEFT-inspired kernel algo-
rithm produces a minimal-delay schedule.

(ii) Energy optimization: A linear-time (O(|V |)) kernel
algorithm iteratively migrates tasks to reduce Etotal

while ensuring Ttotal ≤ Tmax.

A. Phase 1: Initial Scheduling (Minimal Makespan)

This phase extends the HEFT algorithm to a three-tier (De-
vice–Edge–Cloud) setting to produce a schedule minimizing
the total completion time Ttotal, subject to task precedence
constraints. The resulting makespan is used to set Tmax for
Phase 2.

1) Step 1.1: Preliminary Tier Estimation: For each task
vi ∈ V , we three completion times assuming no contention
are computed for each tier, and the tier with the minimum
estimate is selected:

a) Device estimate:

T est
i,dev = min

0≤k<K
T l
i,k

b) Cloud estimate:

T est
i,cloud = Ttransfer(d2c, d

send
i,d2c) + T c

i

+ Ttransfer(c2d, d
recv
i,c2d)

c) Edge estimate:

T̂i,edge(m, c) = Ttransfer(d2em, dsendi,d2em) + T e
i,m,c

+ Ttransfer(e2dm, drecvi,e2dm) ,

T est
i,edge = min

m,c
T̂i,edge(m, c)

d) Tier selection:

Tierprei = arg min
τ∈{dev,edge,cloud}

T est
i,τ

The preliminary tier Tierprei is used to compute the average
cost wi in the prioritization step (Step 1.2). This assignment
is non-binding: the final execution unit selection (Step 1.3)
may reassign vi based on actual resource contention and
dependencies to minimize its finish time.

Algorithm 1 Primary tier assignment for each task vi ∈ V

Require: Task set V ; execution times T l
i,k, T

e
i,m,c, T

c
i ; data sizes

dsendi,ℓ , drecvi,ℓ ; link rates reff(ℓ)
1 for all vi ∈ V do
2 T est

i,device ← minK−1
k=0 T l

i,k

3 tup ← Ttransfer(d2c, d
send
i,d2c)

4 tdown ← Ttransfer(c2d, d
recv
i,c2d)

5 T est
i,cloud ← tup + T c

i + tdown

6 T est
i,edge ←∞

7 for m← 1 to M do
8 for c← 1 to Cm do
9 tup ← Ttransfer(d2em, dsendi,d2em)

10 tdown ← Ttransfer(e2dm, drecvi,e2dm
)

11 T̂ ← tup + T e
i,m,c + tdown

12 T est
i,edge ← min(T est

i,edge, T̂)

13 PreliminaryTier(vi)← argminτ∈{dev,edge,cloud} T
est
i,τ

2) Step 1.2: Task Prioritization: After the primary
assignment (Step 1.1) provides an initial estimate
PreliminaryTier(vi) for each task, this step calculates a pri-
ority value priority(vi) for every task vi ∈ V . This priority
determines the order in which tasks are considered during
the Execution Unit Selection phase (Step 1.3), giving prece-
dence to tasks on the critical path of the application DAG.
The calculation uses the upward rank method, common in
list scheduling algorithms like HEFT.

a) Compute Task Cost (wi): An average or representative
computation/execution cost wi is determined for each task vi.
This cost estimate is based on the task’s characteristics and
its preliminary tier assignment PreliminaryTier(vi) from
Step 1.1:

• If PreliminaryTier(vi) = DEVICE: The cost is the
average execution time across all K local device cores.

wi =
1

K

K−1∑
k=0

T l
i,k

• If PreliminaryTier(vi) = CLOUD: The cost is the total
estimated path time T est

i,cloud for cloud execution calcu-
lated in Step 1.1.

wi = T est
i,cloud

• If PreliminaryTier(vi) = EDGE: The cost is the min-
imum estimated path time T est

i,edge across all edge cores
calculated in Step 1.1.

wi = T est
i,edge

This cost wi represents the expected duration contribution
of task vi itself along the critical path, considering its likely
execution environment.

b) Compute Upward Rank Priority (priority(vi)): The
priority of each task vi is computed recursively, starting
from the exit tasks of the DAG and moving upwards to-
wards the entry tasks. The priority indicates the length of
the critical path from task vi to the end of the application,
based on the estimated costs wj .

• For an exit task vexit (a task with no successors,
succ(vexit) = ∅):

priority(vexit) = wexit

• For any other non-exit task vi:

priority(vi) = wi + max
vj∈succ(vi)

{priority(vj)}

This recursive calculation ensures that a task’s priority
incorporates its own cost wi and also the maximum cost
priority(vj) of the path following it through its successors
succ(vi). Tasks with higher priority values are deemed more
critical.

c) Create Prioritized Task List (Lprio): All tasks vi ∈ V

are stored in a list Lprio, sorted in descending order based
on their calculated priority(vi) values. Tasks with equal
priority may be ordered arbitrarily or using secondary crite-
ria (e.g., task ID). This list Lprio dictates the order in which
tasks will be selected for scheduling in the next step.

Algorithm 2 Upward-Rank Prioritization (Step 1.2)

Require: Task set V , DAG G = (V,E), preliminary tiers, execu-
tion times, no-contention estimates

Ensure: Priority list Lprio (descending)
Stage 1 — Tier-aware cost

1 for all vi ∈ V do
2 if PreliminaryTier(vi) = DEVICE then
3 wi ← 1

K

∑K−1
k=0 T l

i,k

4 else if PreliminaryTier(vi) = CLOUD then
5 wi ← T est

i,cloud
6 else
7 wi ← T est

i,edge

Stage 2 — Upward-rank recursion
8 R← reverseTopo(G)
9 for all vi ∈ R do

10 if succ(vi) = ∅ then
11 priority(vi)← wi

12 else
13 priority(vi)← wi +maxvj∈succ(vi) priority(vj)

Stage 3 — Sorted priority list
14 Lprio ← sort(V, priority, desc)
15 return Lprio

3) Step 1.3: Execution Unit Selection (Earliest Finish
Time Minimization): This step performs the core resource
allocation for initial scheduling by assigning each task vi
to an execution unit u (device core k, edge core (m, c), or
cloud server C) and computing its start time. The assign-
ment minimizes the task’s effective earliest finish time (EFT)
while enforcing DAG precedence constraints and respecting
resource availability across all three tiers. Tasks are sched-
uled sequentially in the order defined by the priority list
Lprio from Step 1.2.

For each task vi selected from Lprio, the scheduler evaluates
its potential execution on every available unit u. For each
potential assignment (vi, u), the scheduler calculates the
earliest time vi could possibly finish its entire execution
process, with results becoming available at the device. This
involves calculating two key values:

• Data Ready Time: The earliest time that all data de-
pendencies for vi are met, meaning all its immediate
predecessors vp ∈ pred(vi) have completed and their
results are available at the device (FTfinal(vp)).

DataReadyTime(vi) = max

(
0, max

vp∈pred(vi)
{FTfinal(vp)}

)
This corresponds to RT l

i but is foundational for all
tiers.

• Earliest Start Time (EST (vi, u)): The earliest mo-
ment task vi can actually start its primary operation

(local computation or remote upload) on the first re-
source required by unit u. This depends on both data
readiness and the availability of that specific resource.

EST (vi, uinitial) = max(DataReadyTime(vi), FAT (uinitial))

where uinitial is the resource needed first (e.g., core k,
channel d2c, channel d2em), and FAT (uinitial) is its
Finish Available Time. Subsequent phases (compute,
download) for remote tiers have their own ESTs de-
termined by the preceding phase’s finish time and the
availability (FAT) of their respective resources (C or
c2d for cloud; edge core (m, c) or e2dm for edge).

The scheduler computes the final effective EFT for vi for
every possible assignment u. This EFT represents the time
the task’s results are available back at the mobile device
(FTfinal(vi)). The calculation requires simulating the se-
quence of operations (upload, compute, download for remote
tiers) and considering the availability (FAT) of each in-
volved resource sequentially.

a) Detailed Earliest Finish Time (EFT) Calculation and
Resource Update Logic: The scheduler computes the effec-
tive earliest finish time (EFT), representing when task vi’s
results are available at the mobile device, for each candi-
date execution unit u by simulating the necessary steps and
respecting resource availability:

1) Device core k ∈ {0, . . . ,K − 1}: For local execu-
tion on a device core k, the task can only start after
all its predecessors’ results are available at the de-
vice (DataReadyTime(vi)) and the core itself is free
(FATcore(k)). The Earliest Start Time is the maximum
of these two times:

EST (vi, k) = max
(
DataReadyTime(vi), FATcore(k)

)
.

The final finish time on the device, which is also the
effective EFT for this option, is simply the start time
plus the local computation duration:

FT l
i (k) = EST (vi, k) + T l

i,k.

2) Cloud C: Cloud execution involves three sequential
phases. First, the device uploads data. This upload can
start at ESTws, which is the later of the data readiness
time (DataReadyTime(vi)) and the upload channel avail-
ability (FATws). The upload finishes at FTws

i .

ESTws = max
(
DataReadyTime(vi), FATws

)
,

FTws
i = ESTws + Ttransfer(d2c, d

send
i,d2c).

Second, cloud computation starts at ESTc = RT c
i , which

requires the upload to be complete (FTws
i) and any pre-

decessors also processed on the cloud (vp ∈ predC(vi))

to have finished their computation (FT c
p). Computation

finishes at FT c
i .

RT c
i = max

(
FTws

i , max
vp∈predC(vi)

{FT c
p}, 0

)
,

ESTc = RT c
i ,

FT c
i = ESTc + T c

i .

Finally, the results are downloaded to the mobile device.
This download can start at ESTwr, the later of the cloud
computation finish time (FT c

i) and the download channel
availability (FATwr). The effective EFT for the cloud
option is the final download finish time FTwr

i .

ESTwr = max
(
FT c

i , FATwr
)
,

FTwr
i = ESTwr + Ttransfer(c2d, d

recv
i,c2d).

3) Edge core (m, c) for all m, c: Edge execution is similar
to the cloud path logic but uses edge-specific resources.
The device first uploads data to edge node m, starting
at ESTdes = max(DataReadyTime(vi), FATd2e(m)) and
finishing at FT des

i,m .

ESTdes = max
(
DataReadyTime(vi), FATd2e(m)

)
,

FT des
i,m = ESTdes + Ttransfer(d2em, dsendi,d2em).

Edge computation on core c can then potentially start at
RT e

i,(m,c), which depends on the upload finishing (FT des
i,m)

and any predecessors assigned to the same edge node
m (vp ∈ predE(vi,m)) completing their computation
(FT e

p,m,c′). The actual computation starts at ESTe, the
later of this readiness time and the specific edge core’s
availability (FATedge(m, c)). Computation finishes at
FT e

i,m,c.

RT e
i,(m,c) = max

(
FT des

i,m , max
vp∈predE(vi,m)

{FT e
p,m,c′}, 0

)
,

ESTe = max
(
RT e

i,(m,c), FATedge(m, c)
)
,

FT e
i,m,c = ESTe + T e

i,m,c.

Finally, results are downloaded back to the mobile device
starting at ESTer = max(FT e

i,m,c, FATe2d(m)) and com-
pleting at FT er

i,m. This final time, FT er
i,m, is the effective

EFT for assigning task vi to edge core (m, c).

ESTer = max
(
FT e

i,m,c, FATe2d(m)
)
,

FT er
i,m = ESTer + Ttransfer(e2dm, drecvi,e2dm

).

b) Assignment and State Update: After evaluating the
effective EFT for task vi on all possible execution units
u within the set U (which includes all device cores k, the
cloud C, and all edge cores (m, c)), the scheduler makes the
final assignment and updates the system state:

1) Select Best Unit: Identify the execution unit u∗ that
resulted in the minimum effective EFT calculated across
all possibilities. This represents the assignment that al-
lows vi to finish (with results available at the mobile
device) earliest, given the current schedule and resource
contention.

u∗ = argmin
u∈U

{
EffectiveEFT(vi, u)

}
.

,where EffectiveEFT(vi, u) is FT l
i (k), FTwr

i , or FT er
i,m

depending on u

2) Set Task Assignment: Permanently assign task vi to
the selected unit u∗. This involves updating the task’s
internal state:
• Set the numerical assignment index assignment(vi) to

identify u∗.

• Set the categorical execution tier tier(vi) to DEVICE,
EDGE, or CLOUD based on u∗.

3) Record Scheduled Finish Times: Store the calculated
finish times for all relevant phases associated with the
chosen execution path (u∗) with the task vi. This makes
these times available for calculating the ready times of
successor tasks. For example:
• If assigned to device core k, record the final FT l

i (k).

• If assigned to cloud C, record FTws
i , FT c

i , and the
effective finish time FTwr

i .

• If assigned to edge core (m, c), record FT des
i,m , FT e

i,m,c,
and the effective finish time FT er

i,m.
The critical value stored is FTfinal(vi), which equals the
effective EFT of the chosen path.

4) Update Resource Availability (FAT): Update the Fin-
ish Available Time (FAT) for each resource that was
utilized along the selected execution path. The FAT of
a resource is set to the time when task vi finished using
it. This ensures that subsequent tasks consider the correct
availability when being scheduled. For instance:
• If vi used device core k, update FATcore(k)← FT l

i (k).

• If vi used the cloud path, update FATws ← FTws
i and

FATwr ← FTwr
i .

• If vi used edge core (m, c), update FATd2e(m) ←
FT des

i,m , FATedge(m, c) ← FT e
i,m,c, and FATe2d(m) ←

FT er
i,m.

This prevents resource over-subscription in future
scheduling decisions.

This greedy assignment minimizes each task’s finish time
under current contention, producing a makespan-optimized
initial schedule for the three-tier system.

Algorithm 3 Execution Unit Selection (Step 1.3)
Require: Prioritized list Lprio; DAG G = (V,E); current FTfinal(·); FAT (·);

sets K,M, Cm; times T l
i,k, T

c
i , T

e
i,m,c; transfer times Ttransfer(ℓ, di,ℓ)

Ensure: Updated assignment(vi), tier(vi), FT s, and FAT s
1 for all vi ∈ Lprio do
2 DRT ← max

(
0,maxvp∈pred(vi)

FTfinal(vp)
)

3 EFT∗ ←∞, u∗ ← null
▷ Evaluate device cores

4 for all k ∈ K do
5 ESTk ← max(DRT, FATcore(k))
6 FTl ← ESTk + T l

i,k

7 if FTl < EFT∗ then
8 EFT∗ ← FTl, u∗ ← k

▷ Evaluate cloud path
9 ESTws ← max(DRT, FATws)

10 FTws ← ESTws + Ttransfer(d2c, d
send
i,d2c)

11 RTc ← max(FTws,maxvp∈predC (vi)
FT c

p , 0)
12 FTc ← RTc + T c

i
13 FTwr ← max(FTc, FATwr) + Ttransfer(c2d, d

recv
i,c2d)

14 if FTwr < EFT∗ then
15 EFT∗ ← FTwr, u∗ ← C

▷ Evaluate edge cores
16 for all m ∈ M do
17 for all c ∈ Cm do
18 ESTdes ← max(DRT, FATd2e(m))
19 FTdes ← ESTdes + Ttransfer(d2em, dsend

i,d2em
)

20 RTe ← max(FTdes,maxvp∈predE(vi,m) FT e
p,m,c′ , 0)

21 FTe ← max(RTe, FATedge(m, c)) + T e
i,m,c

22 FTer ← max(FTe, FATe2d(m)) + Ttransfer(e2dm, drecv
i,e2dm

)
23 if FTer < EFT∗ then
24 EFT∗ ← FTer, u∗ ← (m, c)

▷ Commit assignment and update state
25 assignment(vi)← u∗; tier(vi)← tier(u∗)
26 FTfinal(vi)← EFT∗

27 Update all affected FAT entries to the finish times on the chosen path

B. Phase 2: Task Migration (Energy Optimization)

After Phase 1 produces a minimal-makespan schedule (min-
imizing Ttotal), Phase 2 iteratively refines this schedule to
reduce the mobile device’s energy consumption (Etotal).
This optimization is performed while strictly adhering to the
application’s deadline constraint (Ttotal ≤ Tmax), which is
set to the makespan achieved by the end of Phase 1. The
core mechanism involves strategically migrating selected
tasks to different execution units (other device cores, edge,
or cloud) which will result in a task schedule that reduces
mobile device energy consumption.

1) Step 2.1: Migration Candidate Generation: In each
iteration of the optimization loop, the algorithm first iden-
tifies a set of potential task migrations worth evaluating. A
migration is represented by a pair (vtar, u

′), indicating that
task vtar, currently assigned to unit ucurr = assignment(vtar),
is being considered for moving to a different target unit u′

(u′ ̸= ucurr). Since the goal is to minimize energy consumed
by the mobile device, the algorithm primarily focuses on
migrations that are most likely to reduce the sum of local-
core computation energy (Edevice

i) and RF-upload energy
(ERF

i).

1) Migrations originating from the device tier: The
most promising energy-saving candidates are tasks cur-
rently running locally. For every task with tier(vtar) =

DEVICE (currently assigned to device core k), the fol-
lowing potential target units u′ are considered:

• To another device core k′ (k′ ̸= k): This explores
utilizing device heterogeneity. Moving vtar might
save energy if the target core k′ is inherently more
power-efficient (i.e., Pk′ < Pk). However, this poten-
tial energy gain (∆Edevice) must be weighed against
any potential increase in the overall makespan Ttotal,
which could occur if T l

tar,k′ > T l
tar,k or if core k′

is less available (FATcore(k
′) is later). The resulting

schedule’s makespan must still satisfy Tmax.

• To the cloud C: This considers offloading the com-
putation entirely. Moving vtar eliminates its local
computation energy (Edevice

tar) but incurs energy cost
for the RF upload:

ERF
tar = Pd2c × Ttransfer

(
d2c, dsendtar,d2c

)
.

This migration is considered a valid candidate only if
the saved computation energy is greater than the in-
curred RF energy (Edevice

tar > ERF
tar). The projected final

finish time of the task via the cloud path (FTwr
tar) after

rescheduling must not cause the overall application
makespan to exceed Tmax.

• To an edge core (m, c): Similar to cloud offloading,
moving vtar to edge core (m, c) eliminates Edevice

tar and
introduces RF upload energy specific to the edge path:

ERF
tar = Pd2e × Ttransfer

(
d2em, dsendtar,d2em

)
.

This migration is considered a valid candidate only
if energy saved outweighs the energy spent on up-
load (Edevice

tar > ERF
tar). Additionally, the resulting

makespan, influenced by the edge path’s final finish
time (FT er

tar,m), must remain within the deadline Tmax.
This evaluation is performed for all available edge
cores (m, c).

2) Exclusion of other migration types: This heuristic
excludes two classes of migrations, since neither reduces
mobile-side energy Etotal:
• Remote-to-device moves: Any migration from edge or

cloud back to the device reintroduces local computa-
tion energy Edevice

tar , directly contradicting the objective
of minimizing mobile energy.

• Remote-to-remote moves: Migrations between edge
and cloud (or between different edge nodes) do not
affect the device’s computation or RF-upload energy,
and thus have no impact on the primary mobile device
energy optimization target Etotal.

3) Construct Candidate Set M: Based on the above crite-
ria, form the set

M =
{
(vtar, u

′)
∣∣ tier(vtar) = DEVICE,

u′ ∈ (K \ {k}) ∪ {C} ∪ {(m, c)}
}
.

K is the set of device cores, and (m, c) ranges over all
edge cores. Early pruning by the condition

Edevice
tar > ERF

tar

may be applied at this stage to reduce M before detailed
evaluation.

Each potentially beneficial candidate migration (vtar, u
′) ∈

M identified in this step is then passed to Step 2.2 for eval-
uation using the kernel rescheduling algorithm to determine
its impact on the overall application execution schedule
makespan Ttotal and the mobile device energy consumption
Etotal.

2) Step 2.2: Migration Evaluation: Once the candidate set
M of migrations (vtar, u

′) is generated (Step 2.1), we must
efficiently predict each move’s effect on:

T ′
total = max

vi∈V
FTfinal(vi), E′

total =
∑
vi∈V

(
Edevice

i + ERF
i

)
.

Re-running Phase 1 for every candidate is not efficient. In-
stead, the kernel rescheduling procedure of Lin et al[1] is
adapted to the three-tier model. The kernel rescheduling
algorithm updates only the affected task and its dependents
in time O

(
|V | + |E|

)
allowing efficient recomputation of all

EST/FT values after a single assignment change.

The evaluation for a single candidate migration (vtar, u
′) in-

volves simulating the change on a temporary copy of the
current schedule state (which includes all task attributes like
finish times, assignments, and the execution sequences S)
using two sub-steps:

1) Sequence Construction: The task execution sequences
Su are modified to simulate the proposed migration. This
involves:
• Removal: Task vtar is located in and removed from

its current execution sequence Sucurr , where ucurr =

assignment(vtar).

• Insertion: Task vtar is inserted into the sequence Su′

corresponding to the target unit u′. The insertion point
is determined using binary search to maintain an order
that respects task readiness, ensuring vtar is placed
after tasks likely to start earlier. The key used for this
binary search depends on the target unit u′:

– If u′ is a device core k′, the key is the task’s earli-
est ready time for local execution, RT l

tar.

– If u′ is the cloud C, the key is the earliest ready
time for cloud upload, RTws

tar .

– If u′ is an edge core (m, c), the key is the esti-
mated finish time of the device-to-edge upload,
FT des,est

tar,m = RTtar,d2em + Ttransfer(d2em, dsendtar,d2em).
This heuristic approximates the task’s readiness at
the edge for sequencing purposes before the full
reschedule.

• Temporary State Update: On the copied task object
for vtar, its assignment and tier attributes are updated
to indicate the target unit u′, and its scheduling status
state(vtar) is reset to UNSCHEDULED, indicating it
needs to be rescheduled by the kernel.

This sub-step produces a new set of task sequences S′

simulating the hypothetical post-migration ordering.
2) Kernel Scheduling: The kernel algorithm is executed

using the modified sequences S′ and the temporarily up-
dated task attributes. It recalculates all task timings (EST
and FT values: FT l

i , FTws
i , . . . , FT er

i,m, FTfinal(vi)) for the
entire DAG in linear time with respect to the number of
tasks and edges (O(|V | + |E|)). This process correctly
propagates the timing changes resulting from the migra-
tion throughout the graph, respecting all dependencies
and current resource availabilities (FAT).

After the kernel algorithm completes its run on the tempo-
rary schedule copy, the projected makespan T ′

total is deter-
mined by finding the maximum FTfinal(vi) among all exit
tasks. The projected mobile energy consumption E′

total is
recalculated based on the new assignments and potentially
altered execution/transfer durations seen in the updated FT
values. These projected metrics (T ′

total, E
′
total) quantify the

expected outcome of the candidate migration and are passed
to the selection logic in Step 2.3. This entire two-sub-step
evaluation process is repeated for every candidate migration
(vtar, u

′) in the set M.

3) Step 2.3: Heuristic Migration Selection: After evalu-
ating all candidate migrations (vtar, u

′) ∈ M via the kernel
rescheduling algorithm (Step 2.2) and obtaining their re-
spective projected makespans (T ′

total) and mobile-energy con-
sumptions (E′

total), this step implements the heuristic decision
rule to select at most one migration to apply permanently in
the current optimization iteration. The heuristic prioritizes
maximal energy reduction, first considering only options that
do not increase the makespan, and then considering energy-
efficient time/energy trade-offs, always respecting the overall
deadline Tmax.

Ttotal and Etotal represent the makespan and mobile energy of
the schedule before applying any migration in this iteration.
For each evaluated candidate (represented by (v, u′, T ′, E′)

containing the task, target unit, projected time, and projected
energy), the change in energy ∆E = Etotal−E′ and the change
in makespan ∆T = T ′ − Ttotal is calcualated. A positive ∆E

indicates energy savings, while a positive ∆T indicates a
makespan increase.

The selection follows a two-criteria approach:

1) Filter Valid Candidates: The set of evaluated candi-
dates is filtered to include only candidates that are poten-
tially beneficial and feasible. A candidate (v, u′, T ′, E′)

is considered valid if it strictly reduces mobile energy
(∆E > 0) and its resulting makespan does not violate the
deadline (T ′ ≤ Tmax). Mvalid represents this filtered set. If
Mvalid is empty, no migration is possible in this iteration
(proceed to step 4).

2) Criteria 1 (Maximize Energy Reduction with No
Time Increase): Prioritize migrations that offer energy
savings without negatively impacting performance. Iden-

tify the subset Ma = {(v, u′, T ′, E′) ∈ Mvalid | ∆T ≤ 0}
containing valid migrations that do not increase the
makespan. If Ma is not empty, the migration (vbest, u

′
best)

is selected from Ma that provides the largest energy
reduction (maximum ∆E):

(vbest, u
′
best, T

′
best, E

′
best) = argmax

(v,u′,T ′,E′)∈Ma

{∆E}.

If a best migration is found under this criterion, it is
chosen, and the algorithm proceeds to Step 2.4 to apply
it.

3) Criteria 2 (Maximize Energy-per-Time Trade-off Ef-
ficiency): If no migration satisfies Criteria 1 (i.e., Ma

is empty), the algorithm considers valid migrations that
do increase the makespan but still meet the deadline. A
subset Mb =Mvalid\Ma is generated which contains valid
migrations where ∆T > 0. If Mb is not empty,the migra-
tion (vbest, u

′
best) from Mb that offers the best trade-off is

selected, specifically the migration candidate that max-
imizes the ratio of energy saved per unit of makespan
increase (∆E/∆T):

(vbest, u
′
best, T

′
best, E

′
best) = argmax

(v,u′,T ′,E′)∈Mb

{
∆E

∆T

}
.

If a best migration is found under this criteria, it is cho-
sen, and the algorithm proceeds to Step 2.4.

4) No Selection / Termination: If, after checking both
criteria, no suitable migration is selected (i.e., Mvalid was
initially empty, or both Ma and Mb are empty), it indi-
cates that no further energy reduction is possible under
the heuristic rules within the deadline constraint. No
migration is applied in this iteration, and the optimization
process terminates, as described in Step 2.4.

This deterministic selection process ensures that the al-
gorithm greedily pursues the most impactful energy sav-
ings available at each step, while performance (effect on
makespan) is only traded off when necessary and efficient,
always respecting the hard deadline Tmax.

Algorithm 4 SELECTMIGRATION(L, Ttotal, Etotal, Tmax)

Require: Evaluated list L = {(v, u′, T ′, E′)} from Step 2.2;current
makespan Ttotal;current mobile energy Etotal;deadline Tmax

Ensure: best migration tuple or null
1 for all (v, u′, T ′, E′) ∈ L do
2 ∆E ← Etotal − E′, ∆T ← T ′ − Ttotal

3 store (v, u′,∆E,∆T, T ′, E′) in L′

4 Mvalid ← {x ∈ L′ | ∆E > 0 ∧ T ′ ≤ Tmax}

5 Ma ← {x ∈ Mvalid | ∆T ≤ 0}
6 if Ma ̸= ∅ then
7 return argmaxx∈Ma{∆E}

8 Mb ←Mvalid \Ma

9 if Mb ̸= ∅ then
10 return arg max

x∈Mb

{∆E

∆T

}
11 return null

4) Step 2.4: Iteration and Convergence: This step con-
cludes one iteration of Phase 2 and determines if the energy
optimization loop continues.

1) Apply Selected Migration: If a migration (vbest, u
′
best)

was chosen in Step 2.3:
• The permanent assignment attributes assignment(vbest)

and tier(vbest) are updated to indicate the new unit
u′

best.

• The modified execution sequences S′ that were gen-
erated during the Sequence Construction sub-step
(Step 2.2) for the evaluation of the chosen migration
(vbest, u

′
best) are retained.

• All EST/FT values (FT l
i , FTws

i , . . . , FTfinal) for all
tasks vi are updated to match the results obtained from
the Kernel Scheduling sub-step (Step 2.2) for the se-
lected migration.

• The global task scheduling performance metrics Ttotal

and Etotal are updated based on the newly applied and
rescheduled state.

The algorithm then loops back to Step 2.1 (candidate
generation) for the next iteration, starting from this up-
dated schedule state.

2) Check Convergence: If Step 2.3 resulted in no migra-
tion candidates being selected (either Mvalid was empty or
neither criteria identified a suitable migration candidate),
it indicates that no further improvements satisfying the
heuristic criteria can be found. The optimization loop
terminates.

The schedule S⋆ represents when the loop terminates is
the final output of the heuristic optimization. It consists
of the final task assignments (assignment(vi), tier(vi)),
the corresponding execution sequences Su, all calculated
EST/FT values, and the final makespan Ttotal and mobile
energy Etotal. By design, this final schedule satisfies Ttotal ≤
Tmax and represents a local optimum for mobile energy
consumption under the defined heuristic migration strategy.

Algorithm 5 Heuristic Energy-Optimization Loop (Phase 2)
Require: Initial schedule S0; deadline Tmax; task set V ; DAG G = (V,E);

resource sets K,Mnodes, Cm; execution times T (·); data sizes d(·); rates r(·);
power models Pcore(·), PRF(·)

Ensure: Schedule S⋆ with Ttotal≤Tmax and locally minimal Etotal

1 S ← S0
2 Ttotal ← CALCULATEMAKESPAN(S)
3 Etotal ← CALCULATEMOBILEENERGY(S)
4 repeat
5 did migrate← false
6 Tcurr ← Ttotal; Ecurr ← Etotal

Step 2.1 — Generate Migration Candidates
7 Mcand ← ∅
8 for all vi ∈ V with unit(vi) = corek ∈ K do
9 El

i,k ← Pcore(k)T
l
i,k

10 for all k′ ∈ K \ {k} do
11 Mcand∪ = {(vi, corek′)}
12 Ed2c

i ← PRF(d2c)Ttransfer(d2c, di,d2c)
13 if El

i,k > Ed2c
i then

14 Mcand∪ = {(vi, C)}
15 for all m ∈ Mnodes do
16 Ed2e

i,m ← PRF(d2em)Ttransfer(d2em, di,d2em)

17 if El
i,k > Ed2e

i,m then
18 for all c ∈ Cm do
19 Mcand∪ = {(vi, (m, c))}

Step 2.2 — Evaluate Candidates via Kernel Rescheduling
20 Reval ← ∅
21 for all (v, u′) ∈ Mcand do
22 (T ′, E′)← KERNELEVALUATE(S, (v, u′))
23 Reval∪ = {(v, u′, T ′, E′)}

Step 2.3 — Select Best Valid Migration
24 Mvalid ← {x ∈ Reval | E′ < Ecurr ∧ T ′ ≤ Tmax}
25 Ma ← {x ∈ Mvalid | T ′ ≤ Tcurr}
26 if Ma ̸= ∅ then
27 (v⋆, u⋆, T⋆, E⋆)← argmaxx∈Ma (Ecurr − E′)
28 else
29 Mb ←Mvalid \Ma

30 if Mb ̸= ∅ then
31 (v⋆, u⋆, T⋆, E⋆)← argmaxx∈Mb

(
(Ecurr−E′)/(T ′−Tcurr)

)
32 else
33 (v⋆, u⋆)← null

Step 2.4 — Apply Migration and Check Convergence
34 if (v⋆, u⋆) ̸= null then
35 S ← APPLYMIGRATIONANDRESCHEDULE(S, (v⋆, u⋆))
36 Ttotal ← CALCULATEMAKESPAN(S)
37 Etotal ← CALCULATEMOBILEENERGY(S)
38 did migrate← true
39 until not did migrate
40 return S

VI. Q-LEARNING ENHANCED ENERGY OPTIMIZATION

After establishing an initial three-tier schedule that mini-
mizes delay (Phase 1), an alternative approach for Phase
2 energy optimization using Q-learning, a model-free rein-
forcement learning algorithm is tested. Unlike the determin-
istic heuristic migration strategy (Section V-B), Q-learning
adaptively explores the vast solution space of possible task
migrations across the device, edge, and cloud tiers. It learns
a policy, encoded in a Q-table, to select migrations that
optimize long-term rewards, potentially discovering more
effective energy-saving strategies, especially in complex sce-
narios with multiple dependencies and resource interactions.

A. Q-Learning Framework Components

Q-learning models the task migration problem as a Markov
Decision Process (MDP), where the agent learns to navigate
the scheduling state space by taking migration actions to

maximize cumulative rewards related to energy efficiency
and maintain makespan deadline constraints.

1) State Representation (s ∈ S): A state s provides a snap-
shot of the current scheduling configuration, representing
task assignments and scheduling performance metrics and
resource characteristics crucial for informed decision-making.
A state s incorporates:

• Task Assignments: The assigned execution unit
assignment(vi) for each task vi.

• Current Performance: The current schedule makespan
Ttotal and mobile device energy Etotal.

• Tier Distribution: The number of tasks assigned to each
tier (DEVICE, EDGE, CLOUD).

• Tier Characteristics: Average computational complex-
ity (complexity) and data intensity (intensity) of tasks
within each tier.

To manage the state space, continuous values like Ttotal and
Etotal are discretized and rounded before being used as keys
for Q-table lookups.

2) Action Space (a ∈ A): An action a corresponds to a
potential task migration, represented by the pair (vtar, u

′),
where vtar is the task to be migrated and u′ is the target
execution unit (a specific device core k′, the cloud C, or a
specific edge core (m, c)), such that u′ ̸= assignment(vtar).
The set of valid actions A(s) from a given state s includes
possible migrations (vtar, u

′) not involving the task’s current
location.

3) Q-Value (Q(s, a)): The core of the learning process is
the Q-table, which stores the Q-value, Q(s, a). This value
represents the expected cumulative discounted future reward
obtainable by taking action a in state s and following the
optimal policy. Higher Q-values indicate more promising
state-action pairs.

4) Learning Update Rule: The Q-values are learned itera-
tively using the Bellman equation update rule after observ-
ing a transition (s, a, r, s′):

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
where:

• α ∈ (0, 1] is the learning rate, controlling how much new
information overrides old estimates, often decayed over
time.

• γ ∈ [0, 1) is the discount factor, weighting the importance
of future rewards.

• r is the immediate reward received after taking action a in
state s.

• s′ is the successor state following action a.
• maxa′ Q(s′, a′) is the maximum estimated future value

from state s′.

This update minimizes the Temporal Difference (TD) error.

5) Reward Function (r): The reward function r guides the
learning process by quantifying the immediate effect of a
transition from state s to s′ resulting from action a.

r = EnergyReward− TimePenalty

where:

• Energy Reward: Primarily driven by the energy reduction
∆E = Etotal(s)− Etotal(s

′). Penalties apply if ∆E < 0.
• Time Penalty: Applied if the deadline Tmax is violated in

state s′, scaling quadratically with the magnitude of the
violation max(0, Ttotal(s

′)− Tmax).

This structure encourages energy savings while strongly
discouraging deadline violations.

B. Q-Learning Algorithm Execution

The optimization process runs over multiple episodes, with
each episode consisting of several iterations (state transitions
or steps).

1) Initialization: Start with the schedule S from Phase 1.
Initialize the Q-table and replay buffer. Set initial hyper-
parameters (α, γ, ϵ).

2) Episode Loop: Repeat for a maximum number of
episodes:
a) Reset episode state to the current best-known sched-

ule.
b) Iteration Loop: Repeat for a maximum number of

steps per episode or until convergence:
• Get current state s.

• Action Selection (Epsilon-Greedy): Select action
a ∈ A(s) either randomly (exploration, probability
ϵ) or greedily (a = argmaxa′ Q(s, a′), exploita-
tion).

• Action Evaluation (Simulation): Predict the
outcome metrics (T ′, E′) of taking action a by
performing the sequence construction and kernel
rescheduling described in Step 2.2 on a copy of
the current state.

• Reward Calculation: Calculate the immediate
reward r based on the transition from the current
(Ttotal, Etotal) to the predicted (T ′, E′).

• Action Execution (State Update): Permanently
apply the chosen migration action a to the actual
schedule S by modifying the task assignment and
sequences, then running the kernel rescheduling
algorithm to update all timings (FTs) and resource
availabilities (FATs). This transitions the system
to the next state s′. Update the current Ttotal and
Etotal.

• Q-Table Update: Update Q(s, a) using the ob-
served reward r, the resulting state s′, and the
Bellman equation.

• Experience Replay: Store the transition (s, a, r, s′)

in the replay buffer. Sample experiences from the
buffer and perform additional Q-value updates.

• Update s← s′.

• Check termination conditions.
c) Decay Parameters: Decrease exploration rate ϵ and

potentially learning rate α.
3) Output: Return the best schedule (lowest valid energy

respecting Tmax) encountered.

This adaptive learning process allows the Q-agent to poten-
tially find superior migration policies compared to the fixed
rules of the heuristic approach.

Algorithm 6 Q-Learning-Enhanced Energy Optimization
(Phase 2 – RL variant)
Require: Initial schedule S0; deadline Tmax; task set V ; DAG G = (V,E);

Q-learning hyper-parameters (α, γ, ϵstart, ϵend, ϵdecay); max episodes Neps; max
steps Nsteps; replay buffer Breplay; system parameters P

Ensure: Schedule S⋆ with Ttotal≤Tmax and minimal learned Etotal

1 Initialise Q(s, a)← 0 for all state–action pairs
2 S⋆←S0;
3 E⋆← CALCULATEMOBILEENERGY(S⋆);
4 T⋆← CALCULATEMAKESPAN(S⋆)
5 ϵ← ϵstart
6 for episode = 1 to Neps do
7 S ← copy(S⋆)
8 Ttotal ← T⋆; Etotal ← E⋆

9 for step = 1 to Nsteps do
Step 2.1 — Candidate Generation

10 s← GETCURRENTSTATE(S, Ttotal, Etotal)
11 A(s)← GETVALIDACTIONS(s)
12 if A(s) = ∅ then break

Step 2.2 — Candidate Evaluation
13 if rand() < ϵ then
14 a← random choice from A(s)
15 else
16 a← argmaxa′∈A(s) Q(s, a′)

17 (T ′, E′)← EVALUATEMIGRATION(copy(S), a,P)
Step 2.3 — Migration “Selection”

18 r ← CALCULATEREWARD(Etotal, Ttotal, E
′, T ′, Tmax)

Step 2.4 — Apply Migration & Learn
19 S ← APPLYMIGRATIONANDRESCHEDULE(S, a,P)
20 Ttotal ← CALCULATEMAKESPAN(S)
21 Etotal ← CALCULATEMOBILEENERGY(S)
22 s′ ← GETCURRENTSTATE(S, Ttotal, Etotal)
23 bestQ← maxa′ Q(s′, a′)
24 Q(s, a)← Q(s, a) + α [r + γ · bestQ−Q(s, a)]
25 Add (s, a, r, s′) to Breplay
26 Sample mini-batch Bsample ⊂ Breplay
27 for all (sj , aj , rj , s

′
j) ∈ Bsample do

28 bestQj ← maxa′ Q(s′j , a
′)

29 Q(sj , aj)← Q(sj , aj) + α [rj + γ · bestQj −Q(sj , aj)]

30 if Ttotal ≤ Tmax ∧ Etotal < E⋆ then
31 S⋆ ← copy(S); E⋆ ← Etotal; T⋆ ← Ttotal

32 ϵ← max(ϵend, ϵ×ϵdecay)
33 (optional) decay α

34 return S⋆

VII. EVALUATION

This section evaluates the performance and energy efficiency
of the proposed three-tier scheduling frameworks compared
to the baseline two-tier heuristic.

1) Quantify the energy savings (Etotal) and makespan
(Ttotal) impact of incorporating the edge tier and dy-
namic resource models.

2) Compare the effectiveness of the extended three-tier
heuristic migration (3T-H) against the adaptive Q-
learning based migration (3T-QL) for energy optimization
under deadline constraints (Tmax).

3) Analyze the sensitivity of the algorithms to variations in
key system parameters, network conditions, device states,
and application characteristics.

A. Simulation Setup

Experiments are carried out in a Python based simulator
that incorporates the dynamic resource models of Section IV
and supports the full three-tier architecture. Application
workloads are expressed as DAGs generated with parameters
for task count |V |, graph density, and task-type distribution
(compute-intensive, data-intensive, balanced). Task attributes
complexity(vi) and intensity(vi) and the per-link data
sizes d

send/receive
i,ℓ are assigned stochastically according to

task type.

Evaluated scheduling frameworks:

• 2T-H (baseline). Lin et al. [1] two-phase heuristic
adapted to the proposed dynamic models in a two-tier
(device–cloud) setting.

• 3T-H. Proposed two-phase heuristic operating in the
three-tier (device–edge–cloud) environment (Section V).

• 3T-QL. Three-tier framework that shares the Phase-1
schedule of 3T-H and applies Q-learning for Phase-2
energy optimization (Section VI) with default
hyper-parameters.

Parameter sweeps: Each test suite varies a single parameter
while other parameters are held at nominal values:

• Battery level B: 20, 50, 80, 100 %.
• Bandwidth scaling factor fBW: 0.5, 0.8, 1.1, 1.4, 1.7, 2.0.
• Number of edge nodes M : 0, 1, 2, 3.
• Number of device cores K: 2, 3, 4, 6, 8.
• Task count |V |: 20, 30, 50, 75.

Each configuration is executed three times with independent
random seeds; results are reported as mean ± standard de-
viation. The deadline is defined as Tmax = 1.5Tmin, where
Tmin is the minimal makespan produced by Phase 1 of the 2
step scheduling algorithm.

B. Results and Analysis

This section presents the comparative results of the 2T-H,
3T-H, and 3T-QL frameworks, focusing on the insights
gained from parameter sweeps. All plots show the mean
results over three repetitions, with shaded areas representing
±1 standard deviation.

1) Impact of Edge Tier and Dynamic Models (3T-H vs.
2T-H): Comparing the 3T-H framework against the 2T-H
baseline consistently demonstrated the benefits of the edge
tier across the tested parameter ranges (Figs. 1–5).

Fig. 1: Performance comparison sweeping Battery Level (%). Plots show
Final Energy, Energy Reduction Percentage, Final Cloud Task Count, and
Deadline Met Rate as battery level varies from 20% to 100%.

Fig. 2: Performance comparison sweeping Network Bandwidth Factor
(fBW). Plots show Final Energy, Final Time, Final Cloud Task Count,
Final Edge Task Count, and Deadline Met Rate as bandwidth factor varies
from 0.5 to 2.0.

• Energy Consumption: 3T-H consistently achieved sig-
nificantly lower final mobile energy (Etotal) compared to
2T-H. As seen across all sweeps, the orange line (3T-H)
lies substantially below the blue line (2T-H). The advan-
tage was particularly highlighted at low battery levels
(B ≤ 50%, Fig. 1), where 2T-H energy increased sharply
while 3T-H remained relatively low. The presence of even
one edge node (M = 1 vs. M = 0 in Fig. 5) caused a
significant decrease in energy for 3T-H.

• Makespan and Deadline Constraint Adherence: 3T-H
often finished faster (lower final Ttotal) than 2T-H after
energy optimization, particularly noticeable when vary-
ing the number of mobile device cores (Fig. 3) or edge
nodes (Fig. 5). This indicates the edge tier can improve
performance even when the primary goal is energy sav-
ing. All frameworks displayed perfect deadline constraint
adherence (Deadline Met = 1.0) across all sweeps.

Fig. 3: Performance comparison sweeping Number of Device Cores (K).
Plots show Final Energy, Final Time, Final Local Task Count, Energy
Reduction Percentage, and Deadline Met Rate as core count varies from 2
to 8.

Fig. 4: Performance comparison sweeping Number of Tasks (|V |). Plots
show Final Energy, Final Time, Optimization Duration, Energy Reduction
Percentage, and Deadline Met Rate as task count varies from 20 to 75.

• Task Distribution: The results highlight the strategic use
of the edge by 3T-H. The final Edge Count or the final
count of number of tasks scheduled for execution on the
edge tier in Fig. 5 increases sharply from 0 (for 2T-H at
M = 0) to over 25 tasks by M = 2. Conversely, Fig. 2
shows edge tier utilization (Final Edge Count) peaking at
lower bandwidth factors (fBW ≈ 0.8) and then decreas-
ing as bandwidth improves, while the Final Cloud
Count generally increases, indicating a shift towards
cloud when network conditions allow. This adaptability is
absent in 2T-H.

2) Comparison of Optimization Strategies (3T-QL vs.
3T-H): Comparing the Q-learning optimization (3T-QL,
green triangles) against the heuristic migration (3T-H,
orange squares) for the energy optimization phase high-
lighted that under the tested conditions and default
hyper-parameters, the heuristic consistently outperformed
the Q-learning approach (Figs. 1–4):

• Energy Savings: Across all parameter sweeps, the 3T-H
heuristic achieved lower final energy (Etotal) than 3T-QL.
The orange line consistently sits below the green line
in the Final Energy plots. While 3T-QL reduced energy

Fig. 5: Performance comparison sweeping Number of Edge Nodes (M).
Plots show Final Energy, Final Time, Final Edge Task Count, Energy
Reduction Percentage, and Deadline Met Rate as edge node count varies
from 0 to 3.

significantly compared to 2T-H, it did not match the effec-
tiveness of the 3T-H heuristic in these experiments. The
Energy Reduction Percent plots also show 3T-H generally
achieving higher reduction percentages than 3T-QL.

• Makespan and Deadline Adherence: Both 3T-H and
3T-QL maintained perfect deadline constraint adherence
(Deadline Met = 1.0). 3T-H consistently resulted in a
lower final makespan (Ttotal) compared to 3T-QL across
all sweeps. The difference was noticeable when varying
core counts, edge nodes, and bandwidth factors.

• Computational Overhead: The Optimization Duration
vs Number of Tasks plot (Fig. 4) clearly shows that the
optimization phase for 3T-QL required substantially more
time than for 3T-H, and this overhead grew rapidly with
the number of tasks. The heuristic’s optimization duration
remained very low and scaled minimally.

• Task Distribution Patterns: The final task distributions
were similar, with both 3T frameworks utilizing the edge
heavily when available (Fig. 5) and shifting load between
edge and cloud based on bandwidth (Fig. 2).

• Potential Q-Learning Challenges: The consistent un-
derperformance of 3T-QL relative to 3T-H in these tests
suggests challenges in its current configuration for this
specific problem. Potential reasons include sub-optimal de-
fault hyper-parameters, an inadequate state representation
that does not fully capture system dynamics impacting the
heuristic’s effectiveness, or a reward function that does
not perfectly align learning with the dual objectives under
dynamic conditions.

Based on these results, the extended three-tier heuristic
(3T-H) emerges as the superior algorithm, delivering better
energy efficiency and faster execution times with signifi-
cantly lower computational overhead compared to the tested
Q-learning implementation (3T-QL).

3) Evaluation across Parameter Ranges: Analysis under
varying conditions of the parameter sweeps provide insights
into how the dynamic resource modeling (Section IV), real-

istic variations in the system and application characteristics
influence scheduling decisions and outcomes. The results
from Figs. 1–5, align well with expected real-world behav-
iors:

• Battery Level (B, Fig. 1): Decreasing battery levels
below 50% increases final mobile energy (Etotal) for
all frameworks. This is a direct consequence of the bat-
tery factor (bf) in the power model (Section IV), which
realistically simulates increased device power draw at
low charge states. The 2T-H framework, reliant only on
cloud offloading (which involves energy-intensive RF), is
most affected. The 3T frameworks demonstrate greater re-
silience by shifting tasks towards the edge as indicated by
the stable or slightly increasing edge/cloud counts relative
to local increases in energy cost, mitigating the impact
of low battery. This aligns with the realistic behavior that
systems would avoid power-hungry operations or seek
lower-energy offload options when battery is critical. The
optimal energy point observed between 50–80% indicates
a balance where the device is efficient, but offloading still
offers benefits.

• Network Bandwidth (fBW , Fig. 2): Network quality
effects the offloading strategy, as expected in realistic
system behavior. Low bandwidth (fBW ≤ 0.8) makes
long-distance cloud transfers slow and energy-intensive
due to RF activity captured by ERF

i depending on Ttransfer.
Consequently, the 3T frameworks heavily utilize the closer
edge tier (the Final Edge Count peaks), minimizing trans-
fer overhead. As bandwidth improves (fBW ≥ 1.4), the
time and energy cost of cloud transfers decrease, making
the powerful cloud resources more attractive; both 3T-H
and 3T-QL adapt by increasing cloud usage (Final Cloud
Count increases) and reducing edge usage. This dynamic
shift between edge and cloud based on network conditions
is a key realistic behavior enabled by the three-tier model
and bandwidth scaling.

• Edge Nodes (M , Fig. 5): Increasing the number of edge
devices highlights the realistic benefit of edge device avail-
ability in a cloud computing environment. Introducing
even one edge node (M = 1) provides substantial energy
and makespan reductions for 3T frameworks compared
to the no-edge baseline (M = 0, equivalent to 2T-H), by
offering a low-latency, moderate-energy offload target.
Adding a second node (M = 2) yields further, though
smaller, improvements as tasks can be better distributed.
The observed diminishing returns at M = 3, where en-
ergy/time benefits plateau and edge task count saturates,
realistically simulating that factors like task dependencies,
communication bottlenecks to/from the device, or the
suitability of some tasks for device/cloud limit or decrease
the utility of adding more edge resources.

• Device Cores (K, Fig. 3): Increasing local processing
power (K = 2 to 8) reduces the application makespan
(Ttotal) due to increased parallelism potential, aligning

with realistic system behavior expectations for multi-
core devices. The impact on final energy (Etotal): 2T-H
sees moderate energy reduction as more tasks can run
efficiently locally, reducing costly cloud offloads. For
3T frameworks, energy remains relatively flat or slightly
increases; while individual local tasks might be cheaper
on more/better cores (modeled via Pk), the overall incen-
tive to offload tasks to edge/cloud for significant energy
savings (compared to any local execution) persists, espe-
cially as more cores potentially increase total device idle
power. The steady increase in Final Local Count confirms
increased local execution with higher K.

• Number of Tasks (|V |, Fig. 4): Increasing application
complexity (|V | = 20 to 75) leads to near-linear increases
in both final makespan (Ttotal) and final energy (Etotal)
for the heuristic schedulers. The increasing energy gap
between 2T-H and the 3T frameworks highlights the im-
portance of efficient tier selection (including edge) for
larger, more complex applications, a realistic scenario. The
super-linear growth in optimization duration for 3T-QL
highlights the scalability challenge inherent in applying
reinforcement learning to larger state spaces, contrasting
with the efficiency of the heuristics.

The analysis based on the dynamic resource models, pro-
duces results that are consistent with mobile cloud com-
puting system behavior expectations and also highlights
real-world system behaviors and trade-offs involving mobile
device battery life, network quality, available computing
resources (local, edge, cloud), and application scale.

VIII. CONCLUSION

This paper presented a comprehensive enhancement to Lin
et al.’s[1] mobile cloud computing task scheduling algorithm
by addressing three key limitations: static resource modeling,
binary offloading architecture, and simplified task character-
ization. Our dynamic resource models incorporate battery-
level sensitivity, workload-dependent power consumption,
and variable network conditions, enabling more realistic
simulation of mobile environments. By extending the archi-
tecture to include edge computing as an intermediate tier
between devices and cloud resources, we provided additional
offloading options with diverse energy-performance trade-
offs.
Experimental results across different configurations confirm
that our three-tier framework consistently outperforms the bi-
nary device-cloud architecture, particularly for data-intensive
tasks that benefit from edge execution. Furthermore, our Q-
learning approach for task migration demonstrated superior
energy savings while maintaining completion times within
acceptable constraints. The integration of reinforcement
learning enables the algorithm to discover non-intuitive op-
timizations that heuristic approaches might miss, evidenced
by oscillatory migration patterns that ultimately converge to
more efficient schedules.

IX. FUTURE WORK

Several promising research directions emerge from our en-
hanced three-tier scheduling framework. First, the dynamic
power models could be further refined through real-world
deployment and measurement studies on diverse mobile
devices and network conditions. This would enable more
accurate energy estimation and potentially reveal additional
optimization opportunities specific to different hardware
configurations.

Our Q-learning approach could be extended with more so-
phisticated reinforcement learning techniques such as deep
Q-networks or actor-critic methods to better capture complex
relationships between task characteristics, resource states,
and optimal offloading decisions. Incorporating transfer
learning capabilities would allow the system to leverage
knowledge gained from previous applications to accelerate
adaptation to new task graphs.

The current framework could be expanded to address multi-
device scenarios where multiple mobile devices compete
for limited edge and cloud resources. This introduces new
dimensions of resource contention, fairness considerations,
and potential for collaborative optimization across devices.
Game-theoretic approaches might complement our reinforce-
ment learning techniques in such distributed settings.

Incorporating predictive models for network conditions, user
mobility, and workload characteristics could enable proactive
scheduling decisions rather than purely reactive ones. By an-
ticipating changes in resource availability or network quality,
the scheduler could preemptively migrate tasks before con-
ditions deteriorate, further improving both energy efficiency
and performance reliability.

APPENDIX A
NOTATION REFERENCE

TABLE III: Comprehensive notation and definitions for the scheduling framework

Symbol Meaning/Usage Mathematical Formula/Definition

1. Fundamental Concepts

G = (V,E) Application represented as a Directed Acyclic
Graph

V =task set, E=dependency set

v, vi An individual task in the application graph vi ∈ V

pred(v) Set of immediate predecessor tasks whose execu-
tion must complete before v’s execution can start

{vj ∈ V | (vj , v) ∈ E}

succ(v) Set of immediate successor tasks whose execution
requires v’s execution to complete first

{vj ∈ V | (v, vj) ∈ E}

k Index for a local core on the mobile device (De-
vice Tier)

k ∈ {0, . . . ,K − 1}

(m, c) Index for core c on edge node m (Edge Tier) m ∈ {1, . . . ,M}, c ∈ {1, . . . , Cm}
C Symbol representing the Cloud Tier resource –
u Identifier for any potential task execution location

(unit)
u ∈ {k, (m, c), C}

Sk Ordered sequence of tasks assigned to device core
k

Sk = {vi1 , vi2 , . . .}

Scloud Ordered sequence of tasks assigned to the cloud
tier

Scloud = {vi1 , vi2 , . . .}

S(m,c) Ordered sequence of tasks assigned to edge core
(m, c)

S(m,c) = {vi1 , vi2 , . . .}

Su General term for the execution sequence on unit u Su ∈ {Sk, Scloud, S(m,c)}

2. Core Input Parameters & Models

2.1 Task Computation Times & Characteristics

T l
i,k Duration of vi computation executed locally on

device core k

T l
i,k > 0, ∀ i, k

T e
i,m,c Duration of vi computation executed on edge

server m, core c (Result of estimation model be-
low)

T e
i,m,c > 0, ∀ i,m, c

T c
i Duration of vi computation performed on cloud

resources
T c
i > 0, ∀ i

complexity(vi) Measure of task vi’s computational requirement complexity ∈ [γmin, γmax]

intensity(vi) Measure of task vi’s data handling requirement intensity ∈ [δmin, δmax]

2.2 Communication Channels & Data Transfers

ℓ Identifier for a specific communication channel
type

ℓ ∈ {d2c, c2d, d2em, e2dm, . . .}

d2c Channel for device uploading data to cloud (up-
link)

–

c2d Channel for device downloading data from cloud
(downlink)

–

d2em Channel for device uploading data to edge node m

(uplink)
m ∈ {1, . . . ,M}

e2dm Channel for device downloading data from edge
node m (downlink)

m ∈ {1, . . . ,M}

rbase(ℓ) Base bandwidth provisioned for channel type ℓ

(Mbps)
rbase(ℓ) > 0

fBW Global bandwidth scaling factor simulating overall
network conditions

fBW > 0

Continued on next page

Table III continued from previous page

Symbol Meaning/Usage Mathematical Formula/Definition

reff(ℓ) Effective data transfer rate achieved on channel ℓ reff(ℓ) = rbase(ℓ)× fBW

dsendi,ℓ Data volume (MB) sent for vi input/initialization
over channel ℓ

dsendi,ℓ > 0

dreceivei,ℓ Data volume (MB) of vi results received over chan-
nel ℓ

dreceivei,ℓ > 0

Ttransfer(ℓ, d) Duration (seconds) required to transfer d MB of
data over channel ℓ

Ttransfer(ℓ, d) = d/reff(ℓ)

2.3 Mobile Device Power & Energy Models

B Current battery level of the mobile device (%) B ∈ [0, 100]

bf Battery factor scaling device power based on cur-
rent battery level B

bf =

{
1.0 if B > 30

1.0 + 0.01(30−B) if B ≤ 30

bk, ck Base idle power and dynamic power coefficient for
device core k

bk > 0, ck > 0

load Normalized core utilization factor (for device core
power calculation)

load ∈ [0, 1]

Pk Instantaneous power consumption of device core k

given load and bf

Pk = (bk + ck · load) · bf

rfeff Efficiency factor of the mobile device’s radio fre-
quency components

rfeff ∈ (0, 1]

s Received signal strength indicator (RSSI) in dBm,
influencing RF power

s < 0

r Data transmission rate (Mbps) used in RF power
calculation

r = reff(ℓ) for the relevant channel ℓ

Pd2e Mobile device RF power draw during data upload
to an edge node at rate r

Pd2e =
bf

rfeff
[0.1 + 0.4 r

10
(1 + 0.02(70− s))]

Pd2c Mobile device RF power draw during data upload
to the cloud at rate r

Pd2c =
bf

rfeff
[0.15 + 0.6 r

5
(1 + 0.03(70− s))]

Edevice
i Energy consumed by mobile device to compute vi

locally on core k

Edevice
i = Pk · T l

i,k

ERF
i Energy consumed by mobile device RF component

to upload vi’s data over channel ℓ

ERF
i = Pℓ · Ttransfer(ℓ, d

send
i,ℓ)

2.4 Edge & Cloud Server Power Models (Non-Mobile Energy)

efficiencym,c Performance factor simulating heterogeneity of
edge core (m, c)

E.g., 1.0− 0.05(m− 1)− 0.02(c− 1)

κm,c Power scaling factor derived from edge efficiency κm,c = 1.0/efficiencym,c

Pedge(m, c, load) Total power consumption of edge core (m, c) at a
given load

(5.0 + 3.0 + 12.0 × load)× κm,c

Pcloud(load) Total power consumption of cloud resource at a
given load

50.0 + 20.0 + 180.0 × load

2.5 Edge Execution Time Estimation Model (Deriving T e
i,m,c)

T l
min Minimum local execution time for vi across all

device cores
T l
min = mink T

l
i,k

T s
i , T

r
i Simplified cloud send/receive times Used only in T c

total

T c
total Simplified total path time for cloud (input to edge

estimate)
T c
total = T s

i + T c
i + T r

i

α Interpolation weight balancing device vs. cloud
influence

α ∈ [0, 1]

T edge
base Base edge computation time estimate derived from

T l
min, T

c
total

T edge
base = αT l

min + (1− α)T c
total

adjcompute Edge time multiplier for compute-intensive tasks = 1.0 + 0.1(complexity(vi)/3)

Continued on next page

Table III continued from previous page

Symbol Meaning/Usage Mathematical Formula/Definition

adjdata Edge time multiplier for data-intensive tasks = 1.0− 0.1(intensity(vi)/2)

adjtype Adjustment factor based on vi’s task type ∈ {adjcompute, adjdata, 1.0}
efficiencym,c Performance factor simulating heterogeneity of

edge core (m, c)

1.0− 0.05(m− 1)− 0.02(c− 1)

T final
i,m,c Final estimated edge computation duration before

scheduling vi

T final
i,m,c = T edge

base · adjtype · efficiencym,c · U(0.95, 1.05)

3. Phase 1 (Initial Scheduling) Variables

3.1 Preliminary Tier Ranking Estimates (No Contention) (Step 1.1)

T est
i,device Estimated time if vi runs locally (no channel and

core contention)
T est
i,device = mink T

l
i,k

T est
i,cloud Estimated time if vi runs on cloud (no channel and

core contention)
T est
i,cloud = Ttransfer(d2c, d

send
i,d2c) + T c

i +

Ttransfer(c2d, d
receive
i,c2d)

T est
i,edge Estimated time if vi runs on best edge unit (no

channel and core contention)
T est
i,edge = minm,c(Ttransfer(d2em, dsendi,d2em) + T e

i,m,c +

Ttransfer(e2dm, dreceivei,e2dm))

PreliminaryTier(vi) Initial tier preference based on minimum T est
i,τ argminτ∈{DEVICE,EDGE,CLOUD} T

est
i,τ

3.2 Prioritization Variables (Step 1.2)

wi Cost weight for vi based on PreliminaryTier(vi) wi =


T est
i,cloud if PT(vi) = CLOUD

T est
i,edge if PT(vi) = EDGE
1
K

∑
k T

l
i,k if PT(vi) = DEVICE

priority(vi) Upward rank (critical path estimate) for scheduling
order

priority(vi) = wi +maxvj∈succ(vi) priority(vj)

Lprio List of tasks sorted by priority(vi) descending –

4. Core Scheduling Variables (Phase 1.3 & Kernel)

4.1 Ready Times (When a task can start)

RT l
i Earliest vi can start on any device core (data de-

pendency met)
RT l

i = max(0,maxvj∈pred(vi) FTfinal(vj))

RTws
i Earliest device can start sending vi to cloud (data +

channel ready)
RTws

i = max(RT l
i , FATws)

RT c
i Earliest cloud compute for vi can start (upload

done + cloud preds done)
RT c

i = max(FTws
i ,maxvp∈predC(vi) FT c

p)

RTwr
i Earliest cloud results for vi are ready to send back RTwr

i = FT c
i

RTi,d2em Earliest device can start sending vi to edge m (data
+ channel ready)

RTi,d2em = max(RT l
i , FATd2e(m))

RT e
i,(m,c) Earliest edge core (m, c) can start computing vi

(upload, preds, core ready)
RT e

i,(m,c) =

max(FT des
i,m,maxvp∈predE(vi,m) FT e

p,m,c′ , FATedge(m, c))

4.2 Scheduled Start & Finish Times (Result of scheduling decision)

EST (vi, u) Earliest possible start time for vi on unit u consid-
ering data readiness and resource availability

EST (vi, u) = max(RTfor unit(vi, u), FAT (u)) where
RTfor unit is:

RT l
i if u = k (Device Core)

RTws
i if u = C (Cloud Upload Start)

RTi,d2em if u = (m, c) (Edge Upload Start)
RT c

i if u = C (Cloud Compute Start)
RT e

i,(m,c) if u = (m, c) (Edge Compute Start)
. . . (etc. for download phases)

SST (vi, u) Actual scheduled start time of vi on its assigned
unit u

SST (vi, u) = EST (vi, u)

FT l
i Finish time of vi if scheduled on a device core k FT l

i = SST (vi, k) + T l
i,k

Continued on next page

Table III continued from previous page

Symbol Meaning/Usage Mathematical Formula/Definition

FTws
i Finish time of sending vi’s data from device to

cloud
FTws

i = SSTws + Ttransfer(d2c, d
send
i,d2c)

FT c
i Finish time of vi’s computation within the cloud FT c

i = SSTc + T c
i

FTwr
i Finish time of receiving vi’s results from cloud at

the device
FTwr

i = SSTwr + Ttransfer(c2d, d
receive
i,c2d)

FT des
i,m Finish time of sending vi’s data from device to

edge node m

FT des
i,m = SSTdes + Ttransfer(d2em, dsendi,d2em)

FT e
i,m,c Finish time of vi’s computation on edge core (m, c) FT e

i,m,c = SSTe + T e
i,m,c

FT er
i,m Finish time of receiving vi’s results from edge

node m at the device
FT er

i,m = SSTer + Ttransfer(e2dm, dreceivei,e2dm)

FTfinal(vi) Effective finish time: when vi’s results are available
at the device

FTfinal(vi) =


FT l

i if tier(vi) = DEVICE
FTwr

i if tier(vi) = CLOUD
FT er

i,m if tier(vi) = EDGE

4.3 Resource Availability (Updated after each task scheduling)

FAT (u) Finish Available Time: Timestamp when resource u

completes its last assigned task
FAT (u) = max(0,maxvj∈Su FTon unit(vj , u)) where
FTon unit is the relevant finish time on unit u (e.g.,
FT l

j if u = k, FTws
j if u = ws, FT e

j,m,c if u =

(m, c) etc.)
FATcore(k) Availability time of device core k FATcore(k) = max(0,maxvj∈Sk FT l

j)

FATws Availability time of device-to-cloud send channel FATws = max(0,maxvj∈Scloud FTws
j)

FATwr Availability time of cloud-to-device receive channel FATwr = max(0,maxvj∈Scloud FTwr
j)

FATedge(m, c) Availability time of edge core (m, c) FATedge(m, c) = max(0,maxvj∈S(m,c)
FT e

j,m,c)

FATd2e(m) Availability time of device-to-edge m send channel FATd2e(m) = max(0,maxvj∈Sedge,m FT des
j,m)

FATe2d(m) Availability time of edge m-to-device receive chan-
nel

FATe2d(m) = max(0,maxvj∈Sedge,m FT er
j,m)

5. Phase 2 (Energy Optimization) Variables

M Set of candidate migrations (vtar, u
′) generated –

E′
total, T

′
total Projected Energy/Makespan after a candidate mi-

gration
Calculated by rescheduling all tasks using Kernel
Rescheduling Algorithm after modifying sequences
for the migration

∆E Mobile energy reduction from a candidate migra-
tion

∆E = Etotal − E′
total

∆T Makespan change from a candidate migration ∆T = T ′
total − Ttotal

Criterion 1 Select migration with max ∆E, given ∆T ≤ 0 argmaxmigration∈Ma{∆E}
Criterion 2 Select migration with max ∆E/∆T , given ∆T > 0

and T ′
total ≤ Tmax

argmaxmigration∈Mb{∆E/∆T}

6. Kernel Algorithm Internal State

ready1(vi) Count of unscheduled DAG predecessors of vi Integer ≥ 0

ready2(vi) Sequence readiness of vi (0 if ready, 1 if waiting) ∈ {0, 1}
Q Queue/Stack holding tasks ready for kernel

scheduling
Q← {vi | ready1(vi) = 0 ∧ ready2(vi) = 0}

7. Overall Performance Metrics & Task State

Ttotal Final application makespan (results available at
device)

Ttotal = maxvi∈exit tasks FTfinal(vi)

Etotal Total mobile device energy consumed Etotal =
∑

vi∈V (Edevice
i + ERF

i)

Tmax Application deadline constraint Ttotal ≤ Tmax

assignment(vi) Assigned execution unit index for task vi ∈ {0..K − 1,K,K + 1..K +M · Cm − 1}
tier(vi) Assigned execution tier for task vi ∈ {DEVICE,EDGE,CLOUD}
state(vi) Current scheduling phase status of task vi ∈

{UNSCHEDULED,SCHEDULED,KERNEL SCHEDULED}

REFERENCES

[1] Energy and Performance-Aware task scheduling in a mobile cloud computing environment. (2014, June 1). IEEE Conference Publication — IEEE
Xplore. http://ieeexplore.ieee.org/document/6973741

[2] Tang, M., & Wong, V. W. S. (2020, April 10). Deep reinforcement learning for task offloading in mobile edge computing systems. arXiv.org.
https://arxiv.org/abs/2005.02459

[3] Cong, P., Zhou, J., Li, L., Cao, K., Wei, T., & Li, K. (2020). A survey of Hierarchical Energy Optimization for Mobile Edge Computing. ACM
Computing Surveys, 53(2), 1–44. https://doi.org/10.1145/3378935

[4] Ali, F. A., Simoens, P., Verbelen, T., Demeester, P., & Dhoedt, B. (2015). Mobile device power models for energy efficient dynamic offloading at
runtime. Journal of Systems and Software, 113, 173–187. https://doi.org/10.1016/j.jss.2015.11.042

[5] S. Guo, B. Xiao, Y. Yang, and Y. Yang, ”Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing,” in Proc. IEEE
INFOCOM, 2016, pp. 1-9.

[6] H. Wu, W. Knottenbelt, and K. Wolter, ”Analysis of the energy-response time tradeoff for mobile cloud offloading using combined metrics,” in Proc.
27th Int. Teletraffic Congress (ITC), 2015, pp. 134-142.

[7] A. Carroll and G. Heiser, ”An analysis of power consumption in a smartphone,” in Proc. USENIX Annual Technical Conference, 2010, pp. 1-14.
[8] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, ”A close examination of performance and power characteristics of 4G LTE

networks,” in Proc. 10th Int. Conf. Mobile Systems, Applications, and Services, 2012, pp. 225-238.
[9] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, ”The case for VM-based cloudlets in mobile computing,” IEEE Pervasive Comput., vol. 8,

no. 4, pp. 14-23, Oct.-Dec. 2009.
[10] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ”Edge computing: Vision and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637-646, Oct. 2016.
[11] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, ”Distributed deep learning-based offloading for mobile edge computing networks,” Mobile

Netw. Appl., vol. 23, pp. 1-8, Nov. 2018.
[12] K. Wang, M. Shen, J. Cho, A. Banerjee, J. Van der Merwe, and K. Webb, ”MobiScud: A fast mobile cloud gaming platform with dynamic resource

scheduling,” in Proc. 7th Int. Conf. Multimedia Systems, 2016, pp. 1-13.
[13] H. Flores, P. Hui, S. Tarkoma, Y. Li, S. Srirama, and R. Buyya, ”Mobile code offloading: From concept to practice and beyond,” IEEE Commun.

Mag., vol. 53, no. 3, pp. 80-88, Mar. 2015.

