
Mitigation Techniques Against Deanonymization
and Denial-of-Service Attacks In The Tor Network

Indrajeet Roy
Department of Electrical and Computer Engineering

Iowa State University
Ames, IA, United States

iaroy@iastate.edu

Abstract—The increasing prevalence of extensive Internet
surveillance has increased the importance of secure and anony-
mous internet use. In response, innovative networking solutions
such as The Onion Router (Tor) have been developed. Tor is
a low-latency network that allows for anonymous and secure
communication of Transmission Control Protocol (TCP) traffic. It
operates on the principles of Onion Routing and decentralization.
The Tor protocol uses end-to-end encryption to protect TCP
streams as they pass through public networks. This encryption
involves wrapping the traffic in encrypted units called Tor cells.
These cells are encrypted multiple times at different points in
the network, ensuring security at each transit stage.However,
the decentralized nature of Tor, while vital to its function, also
introduces potential risks. Its design allows any Internet user to
join the network, which could include malicious actors. These
individuals could exploit the network by either compromising
legitimate nodes or establishing harmful ones. While decentral-
ization is key to Tor’s operation, it also opens up possibilities for
security vulnerabilities.

I. INTRODUCTION

As large-scale internet surveillance intensifies, the de-
mand for secure and anonymous online communication has
surged. This concern has spurred the development of advanced
networking technologies, most notably The Onion Router
(Tor). Tor is a low-latency network specifically designed
to anonymize TCP-traffic communication, building on the
principles of Onion Routing and Decentralization.

The Tor network facilitates the secure and anonymous
transmission of TCP traffic using a protocol that uses Onion
Routing. This method provides end-to-end encryption, effec-
tively anonymizing and securing TCP streams across public
networks. It achieves this by encapsulating TCP traffic within
Tor cells, which are sequentially encrypted at multiple layers
as they traverse a decentralized network of routers.

However, the decentralized architecture that stands as one
of Tor’s major strengths also introduces substantial challenges.
By design, this decentralization permits any internet user to
participate in the network, thereby potentially exposing it to
security risks. Malicious actors can exploit this openness to
compromise the integrity of the network, either by hijacking
legitimate nodes or by setting up malicious nodes themselves.

II. TOR NETWORK ARCHITECTURE AND OPERATION

A. Tor Network Components

Fig. 1. Components of the Tor network

1) Tor Cell: Tor cells are fundamental 512-byte transmis-
sion structures within the Tor network, comprising a payload
and a header. Tor utilizes two primary types of cells: control
cells and relay cells.

Control Cell: Control cells facilitate the construction of
a transmission circuit across the network. Key commands
associated with control cells include:

• CREATE: Establishes a new circuit.
• CREATED: Confirms that the circuit has been successfully

established.
• DESTROY: Terminates an existing circuit.

Relay Cell: Relay cells are essential for the end-to-end
transmission of TCP traffic through the established transmis-
sion circuit. Commands for relay cells include:

• BEGIN: Initiates a TCP connection.
• DATA: Transmits data through the circuit.
• END: Closes a TCP connection.



• SENDME: Requests more data.
• EXTEND: Extends the circuit to include another relay.
• DROP: Drops data from the buffer without transmitting them.

2) Tor Circuit: A multi-hop path composed of several
Tor nodes, designed to facilitate anonymous, low-latency
TCP stream communication from a Tor client to the client’s
destination within the Tor network. This circuit effectively
anonymizes user data by routing them through various nodes,
each adding a layer of encryption, thereby ensuring that each
node along the path knows only its immediate predecessor and
successor.

3) Tor Relay/Node: A Tor relay, also known as a node, is
a publicly listed, volunteer-operated server that plays a crucial
role in the forwarding of traffic across the Tor network. The
Tor network utilizes three types of relays:

Entry/Guard Node: The initial access point for a Tor client
entering the network. Guard nodes are unique because they are
the only nodes within the Tor network that can legitimately
observe the client’s original IP address.

Middle Node: These nodes serve as the primary traffic
forwarding relay within the Tor Network. The majority of
the network consists of these Middle Nodes, which encrypt
and forward traffic. Middle Nodes only have access to the IP
addresses of the directly preceding and succeeding nodes in
the relay chain.

Exit Node: These nodes serve as the primary and final exit
points of a Tor circuit. They are significant because they are
the only nodes where the client’s destination IP address can be
directly observed. Although the final payload transmitted to the
destination often occurs in plain text, it can also be protected
using TLS/SSL encryption. Because this transmission appears
to originate from the exit node, exit nodes are often mistaken
for the source of the traffic, effectively concealing the client’s
actual IP address.

Directory Authority Node: These nodes maintain the
network-wide consensus by regularly updating the list of active
nodes. Both Tor clients and other nodes receive continuous
updates regarding the network’s status and the Tor Consensus
from these Directory Authority Nodes, which gather infor-
mation by periodically receiving operational updates from all
network nodes.

Leveraging the principles of Onion Routing, each node in
a Tor circuit can only decrypt enough data to know where to
send the data next, without being able to view the entire path or
the payload’s contents. This selective decryption is facilitated
by a shared symmetric key, negotiated between the Tor node
and the client during the TLS session that establishes the path
or circuit. This design ensures that no single node has access
to both the origin and destination of the data, significantly
enhancing user privacy and security within the network.

4) Tor consensus: The Tor network employs a consensus
protocol to maintain the network’s stability and security. This
consensus is crucial as it represents a regularly updated list
of Tor nodes, which includes additions and removals based on
current network conditions and node reliability. The consensus
is achieved through a cooperative process involving all nine
directory authority nodes. These nodes exchange, negotiate,
and compile information about node statuses and network
conditions from each directory authority. Once they reach
agreement, the directory authorities sign off on this compiled
data, forming what is known as the Tor consensus. This
process ensures that only trustworthy nodes are active at any
given time, enhancing the overall security and reliability of
the network.

5) Tor Consensus weight: This value plays a critical role
in determining the likelihood that a particular Tor Node will
be selected by the Tor Node Selection Algorithm during the
construction of a transmission path through the network. The
consensus weight of a node is primarily determined by its
bandwidth capacity. Nodes with higher bandwidth capacities
are assigned larger consensus weights by the Directory Au-
thority Node. This mechanism ensures that nodes with greater
capability to handle traffic efficiently are more frequently
involved in the network routing, thereby optimizing the speed
and reliability of the Tor network.

B. Tor Network Operation

1) Circuit Creation: The initiation of data transmission
through the Tor network begins with the establishment of a
secure circuit, spearheaded by the Tor client. This intricate
process involves key components such as the Directory Au-
thority nodes and the Tor Node Selection Algorithm.

Tor Node Selection Algorithm
This algorithm predominantly selects nodes based on their
bandwidth capacity, as nodes with higher bandwidth are more
likely to handle data efficiently and are thus preferred for
inclusion in the circuit. However, the selection is not based
solely on bandwidth. Other critical factors include:

• Diversity in Network: To mitigate risks such as surveil-
lance and network bottlenecks, the algorithm ensures
a diverse selection of nodes across different network
families and geographic locations.

• Entry Guards: The Tor client designates a select few
stable and trusted nodes as entry guards. These guards
are used consistently across multiple circuits to reduce
the risk of interaction with compromised or malicious
entry nodes.

• Exit Policies: The choice of exit nodes is influenced by
their respective policies on traffic types. The algorithm
selects nodes whose policies align with the user’s specific
traffic requirements to ensure the successful exit of data
from the network.



Consensus Verification
Before finalizing the selection, the Tor client consults the
latest Tor consensus. This vital document, updated and dis-
tributed by Directory Authority nodes, contains comprehen-
sive information about each node’s current status (active or
down), designated flags (such as Guard, Exit, Stable), and
performance metrics. By referencing the Tor consensus, the
client ensures that all selected nodes are not only operational
but also trustworthy at the time of circuit creation.

This methodical approach to circuit creation is foundational
to maintaining the anonymity, security, and efficiency of the
Tor network, safeguarding user data as it navigates through
the complex web of nodes.

2) Circuit Encryption: The encryption process within a Tor
circuit employs an Elliptic Curve Diffie-Hellman Ephemeral
(ECDHE) key exchange, which occurs incrementally across
the transmission circuit. As the data traverses each node within
the circuit, a TLS session is negotiated between the Tor client
and the node, facilitating the establishment of a shared secret
key. This method ensures that each segment of the path be-
tween nodes is secured independently, reinforcing the overall
integrity and confidentiality of the data transmission. This
layered encryption strategy is fundamental in preserving user
anonymity and protecting the data from potential interceptors
at any point within the network.

Fig. 2. Tor network Circuit encryption

The encryption process within the Tor network begins with
the initial key negotiation between the Tor client (referred to as
Alice) and the Entry Node (OR1). Alice initiates the process
by sending a CREATE cell (C1) to OR1, which contains
the payload E(gx1). In this expression, gx1 represents the
first component of a Diffie-Hellman (DH) handshake, and E()
denotes RSA encryption using the Entry Node’s public onion
key. Upon receipt, OR1 decrypts the RSA encryption with its
private key and responds with a CREATED cell (C1) that

includes the second component of the DH handshake gy1

and a hash of the final key H(K1). This exchange establishes
a shared key between Alice and OR1, enabling secure data
encryption and decryption during transmission.The subsequent
key negotiation occurs between Alice and a Middle Node
(OR2).

Alice sends a RELAY EXTEND (C1) cell to OR1, which
includes the address of OR2 and the payload E(gx2). Here,
gx2 is the initial part of another DH handshake, and E()
signifies RSA encryption with OR2’s public onion key. OR1
extracts the information, forwards it to OR2 in a CREATE
cell (C2), and OR2 responds with a CREATED cell (C2)
that includes gy2 and a hash of the final key H(K2) after
decrypting the RSA encryption with its private key. Once OR1
receives OR2’s CREATED cell, it relays this information
back to Alice in a RELAY EXTENDED cell (C1). This final
step completes the establishment of a shared key between
Alice and OR2, which is then used for subsequent data
encryption and decryption during their communication.

3) Circuit Transmission: The data transmission process
within a Tor circuit employs Relay DATA cells. These cells
are used by the client to encapsulate the TCP data intended for
transmission. Each Relay DATA cell is securely encrypted with
a shared symmetric key that has been previously negotiated
between the client and each Node in the circuit. As the
data traverses the circuit, each Node along the path decrypts
the Relay DATA cell using its respective shared key. This
decryption process is essential for the node to read and then
re-encrypt the data for the next hop in the circuit. This method
ensures that the data remains secure from end to end, even as it
passes through multiple nodes, each of which only has access
to enough information to decrypt and forward the data without
knowing its origin or final destination.

III. VULNERABILITIES, EXPLOITS AND MITIGATION
TECHNIQUES

A. Sybill Attack

1) Description: A Sybil attack is a significant threat to
decentralized networks, exploiting the fundamental principle
that any individual can contribute nodes to the network. This
type of attack occurs when an attacker gains a disproportionate
influence within the network by creating a large number of
pseudonymous entities—either by hijacking legitimate ma-
chines or deploying a multitude of bots or malicious nodes.

The attacker’s goal is to manipulate network consensus,
which is crucial for maintaining the integrity and functionality
of operations within decentralized systems. By controlling a
substantial portion of the network, the attacker can influence
decisions that are supposed to be made collectively by the
network, potentially leading to fraudulent transactions, double
spending, or censorship.



Fig. 3. Sybil Network Attack

Such attacks undermine the trust and security principles
that decentralized networks are built upon, making it crucial
to implement robust mechanisms to detect and mitigate the
presence of Sybil nodes.

2) Vulnerability in Tor Node Selection Process: In the Tor
network, the initial step for a Tor client to initiate encrypted
TCP stream transmission is to construct a transmission circuit
using the Tor Node Selection Algorithm. This algorithm is
designed to optimize the circuit for efficient transmission
by selecting nodes based on their bandwidth. The nodes
are chosen with reference to the Tor consensus, which is
periodically updated by the Tor Directory Authority Nodes.

The consensus weight of a Tor Node is directly correlated
with the node’s bandwidth. Nodes with higher bandwidth have
a higher consensus weight, increasing their likelihood of being
selected by the Tor Node Selection Algorithm. This results
in nodes with higher consensus weights handling more TCP
traffic across the network. While this mechanism enhances
network efficiency, it also introduces a vulnerability: a node
with artificially inflated bandwidth can gain disproportionate
influence over network traffic. This can potentially expose the
network to risks such as traffic analysis, increased latency
due to overloading, and targeted attacks by malicious entities
aiming to compromise the integrity and anonymity that Tor
aims to provide.

3) Sybil Attack Vector: An attacker can manipulate the
consensus weight of their nodes to control and observe more
traffic across the Tor network. This manipulation can be
achieved by setting up high bandwidth, high uptime Sybil
nodes or by artificially increasing the bandwidth of a single
node. Although a single Sybil Node with unusually high
traffic and large bandwidth might alert the Tor Directory
Authority Nodes, potentially leading to its removal from the
Tor consensus, the attacker might also set up multiple Sybil

Nodes that share a single IP address.

4) Attack Vector: An attacker can manipulate the consensus
weight of their nodes to control and observe more traffic across
the Tor network. This manipulation can be achieved by setting
up high bandwidth, high uptime Sybil nodes or by artificially
increasing the bandwidth of a single node. Although a single
Sybil Node with unusually high traffic and large bandwidth
might alert the Tor Directory Authority Nodes, potentially
leading to its removal from the Tor consensus, the attacker
might also set up multiple Sybil Nodes that share a single IP
address.

Attack Vectors by Network Point of Entry:

Entry/Guard Node

• Man-In-The-Middle Attacks: A malicious Sybil Node
serving as an Entry/Guard Node could intercept or tamper
with data. Since these nodes are the first point of entry
into the network, they can manipulate or eavesdrop on
the data right at the beginning of the Tor circuit.

Middle Node

• Website Fingerprinting: Website Fingerprinting allows
the attacker to deduce the specific destination IP address
from the source IP address, thus de-anonymizing the
client’s activity. While Middle Nodes in a Tor circuit
do not see the encrypted TCP stream of the entire Tor
circuit, an attacker might exploit packet instructions and
transmitted information via the node to correlate the
origin and destination IP addresses.

• Bridge Address Harvesting: Bridge Address Harvesting
targets the identification of Bridge nodes within the Tor
network. Unlike publicly listed Tor Nodes, Bridge Nodes
are private and not easily identifiable, providing an added
level of anonymity especially when publicly listed nodes
are offline or monitored. The attacker can use reverse
referencing of the source IP address of observed TCP
packets against publicly listed Tor Node IP addresses. If
the incoming IP address does not match any listed Node
addresses, the connection might be from a Bridge Node,
thus identifying it.

Exit Node

• Traffic Interception: If a malicious node operates as an
Exit Node, it could intercept the client’s plaintext traffic
after the final onion delayering or decryption process with
the client-shared negotiated key. This compromises both
the integrity and authenticity of the transmitted payload,
exposing the user to potential fraud or data theft.

5) Mitigation Strategies: While the decentralized architec-
ture of the Tor network inherently allows any individual to
contribute nodes, this flexibility also introduces vulnerabilities



such as Sybil attacks. Mitigating these attacks does not mean
altering the decentralized nature of the network; rather, it
involves improving the mechanisms employed by Directory
Authority Nodes for node addition and selection.

Directory Authority Nodes Oversight

• Active Monitoring: Tor Directory Authority Nodes con-
tinuously observe the network, decisively adding or re-
moving nodes from the Tor consensus based on their
observed behavior and trustworthiness.

• IP Address Restrictions: Recent versions of Tor have
implemented stricter IP address restrictions to counter-
act Sybil Nodes. For example, allowing only a limited
number of Tor Nodes per single public IP address helps
prevent a single actor from controlling too many nodes
and gaining disproportionate influence in the network.

B. Cellflood Attack

1) Description: A Cell Flood attack represents a specific
type of Denial-of-Service (DoS) attack targeting the Tor net-
work. This attack disrupts the normal operation by preventing
legitimate Tor users from constructing transmission circuits,
essential for data transmission through the network.

During a Cell Flood attack, a malicious client bombards Tor
Nodes with computationally intensive circuit creation requests
(Control CREATE cell). This flood of requests strains the
processing capabilities of the nodes, leading to a degradation
in their performance. Consequently, the affected Tor Nodes
begin rejecting and dropping all circuit creation commands,
effectively denying service to legitimate Tor clients.

As the overwhelmed nodes become incapacitated, they are
likely to be removed from the Tor consensus by the Tor
Directory Authority Nodes. This removal reduces the number
of active nodes within the network, which can further desta-
bilize the network’s functionality, potentially diminishing user
numbers and compromising both the stability and anonymity
of the network.

2) Vulnerability in Tor Node Encryption: The security of
a Tor Node circuit relies on the use of public and private
keys for encryption and decryption processes, respectively.
Security research indicates a significant disparity in com-
putational effort between these two processes. Specifically,
the decryption process using private keys is markedly more
computationally intensive—it takes approximately four times
longer to execute compared to encryption with public keys.
This discrepancy not only introduces a potential bottleneck but
also presents a vulnerability, as it can significantly slow down
the network under heavy load conditions, making the system
more susceptible to timing attacks and potentially impacting
overall network performance and security.

3) Attack Vector: An attacker can exploit a vulnerability
in the Tor network’s route establishment process by initiating
multiple circuit construction requests at a rate exceeding the
processing capabilities of the Tor Nodes. Specifically, the at-
tacker sends Control CREATE cell requests more rapidly than
the nodes can handle. This overwhelming flow of requests,
being computationally intensive, strains the node’s resources,
leading to a significant reduction in available bandwidth and
processing power. Consequently, the overloaded nodes respond
by issuing Control DESTROY cells to the offending client to
halt the circuit construction process. This action effectively
disrupts the client’s ability to successfully establish a trans-
mission circuit within the Tor network, resulting in a denial-
of-service scenario.

4) Attack Mitigation Strategies: CellFlood attacks aim to
incapacitate Tor nodes by overwhelming them with excessive
CREATE cell requests, causing automatic cell deletion and
eventual rejection of all incoming requests. By requiring a
cryptographic solution before processing these requests, the
resource cost for the attacker increases significantly, making
such attacks less feasible.

Cryptographic Puzzles Against CellFlood Attacks

In this mitigation approach, a Tor client must solve a
cryptographic puzzle before its CREATE cell request is
processed by the node. Similar to mechanisms seen in
blockchain technologies like Ethereum’s proof-of-stake, this
requirement ensures that clients invest computational effort
before the node commits resources. Such puzzles:

• Demand computational work from potential attackers,
thereby reducing the rate of request submissions.

• Allow the node to handle incoming CREATE cell re-
quests without prematurely rejecting or deleting them.

By placing a computational burden on clients, nodes are
protected from being overwhelmed by distributed denial-of-
service attempts. This strategy helps maintain the overall
integrity and functionality of the Tor network, ensuring con-
tinued node availability and reliable response capacity.

IV. REFERENCES

1) “About – Tor Metrics.” Metrics.Torproject.org, met-
rics.torproject.org/glossary.html

2) Barbera, Marco, et al. CellFlood: Attacking Tor Onion
Routers on the Cheap.

3) Bauer, Kevin, et al. Low-Resource Routing Attacks
Against Tor.

4) Diego, San. USENIX Association Proceedings of the
13th USENIX Security Symposium. 2004.

5) “New Tor Denial of Service Attacks and Defenses —



Tor Blog.” Blog.Torproject.org, blog.torproject.org/new-
tor-denial-service-attacks-and-defenses.

6) “‘One Cell Is Enough to Break Tor’s Anonymity’ — Tor
Blog.” Blog.Torproject.org, blog.torproject.org/one-cell-
enough-break-tors-anonymity.

7) Pries, Ryan, et al. A New Replay Attack Against Anony-
mous Communication Networks.

8) Winter, Philipp, et al. Identifying and Characterizing
Sybils in the Tor Network


