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Abstract—The integration of vision capabilities into Large
Language Models (LLMs) represents a significant advancement
in artificial intelligence, enabling systems to process and un-
derstand both visual and textual information simultaneously.
This survey provides a comprehensive examination of Vision-
Language Models (VLMs), focusing on their architectural evo-
lution, training methodologies, and applications. The survey
systematically analyzes the progression from early two-stream
architectures to modern unified frameworks, examining key
developments in model design, pretraining strategies, and cross-
modal learning techniques. Specific areas covered are architec-
tural choices that enable effective vision-language integration,
training paradigms, and emerging evaluation frameworks. The
survey concludes by identifying critical challenges and promising
research directions in vision-language integration, particularly
in areas of architectural efficiency, scalability, and real-world
applications.

Index Terms—YVision Language Models, Large Language Mod-
els, Visual Feature Extraction, Convolutional Neural Networks,
Vision Transformers, Attention Mechanism, Transformer, Latent
Space,Multimodal reasoning, Visual Embeddings, Latent Repre-
sentation

I. INTRODUCTION

In recent years, Large Language Models (LLMs) have
demonstrated revolutionary advances in artificial intelligence
by integrating visual capabilities. The development of these
visual-language models (VLMs) not only pushes the bound-
aries of multimodal interaction capabilities but also enables
computers to understand both visual and textual information,
providing brand new solutions for complex tasks such as image
description generation, visual question and answer, and cross-
modal reasoning. The core breakthrough in this area lies in
the utilization of advanced architectural design and training
paradigms to achieve a deep fusion of visual and linguistic
features [1] [2] [3].

At the architectural level, VLMs have undergone an evo-
lution from early dual-stream to single-stream architectures.
The bi-streaming architecture utilizes separate visual and text
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encoders to extract information separately and subsequently
achieves information alignment through a cross-modal atten-
tion mechanism [4] [5]. In contrast, the unified streaming
model implements continuous visual and text interactions at
each layer of encoding, capturing more fine-grained cross-
modal semantic relations through a self-attention mechanism
[6]. In addition, the patch-based feature extraction approach
replaces the traditional object-based detection technique, sig-
nificantly improving the efficiency and performance of the
model when processing high-resolution inputs [?].

The diversity of training paradigms has likewise contributed
to the rapid progress of VLMs. Contrastive learning lays the
foundation for semantic consistency in multimodal represen-
tations by maximizing the similarity of matched graphic pairs
and the differentiation of unmatched pairs [7]. The introduc-
tion of masking objectives enhances the model’s cross-modal
learning capability. This approach randomly masks a portion of
the input and requires the model to reconstruct it. This process
enables the model to extract deep semantics efficiently within
a self-supervised learning framework [8]. Furthermore, the
generative approach further extends the application boundaries
of VLMs, enabling them to accomplish tasks ranging from
text-generated images to cross-modal reasoning [9].

This review comprehensively analyzes the key develop-
ments in architectural design, training paradigms, and their
applications of VLMs. Section II explores in detail the key
architectural evolutions in key Vision-Language integration
components such as Visual Feature Extraction, Feature Space
Organization and Vision-Language Integration Architectures
and their core innovations. Section III focuses on the theo-
retical foundations and practical effects of different training
paradigms. Section IV summarizes the performance of VLMs
in real-scenario applications.



II. KEY ARCHITECTURAL DEVELOPMENTS
A. Visual Feature Extraction

Visual feature extraction in Vision-Language (VL) integra-
tion transforms raw, pixel-level input into semantically rich,
high-dimensional embeddings that can be aligned and inte-
grated with textual representations. Using architectures such as
Convolutional Neural Networks (CNNs), Vision Transformers
(ViTs), and multimodal encoders, this process converts low-
level visual details into abstract, conceptually meaningful fea-
tures. As Large Language Models (LLMs) increasingly handle
multimodal inputs, the quality and efficiency of visual feature
extraction become critical to their ability to perform cross-
modal reasoning, visual grounding, and context-aware infer-
ence. By providing concept-level understanding of images,
these high-quality representations are essential for achieving
strong performance, adaptability, and interpretability in Vision-
Language Models (VLMs).

1) Object-centric Visual Feature Extraction: Object-
centric, region-based visual feature extraction is a foundational
method in Vision-Language (VL) integration [10] [4]. Its key
foundation is the utilization of object detection models—such
as Faster R-CNN [11] or Mask R-CNN [12] to generate a
discrete set of region proposals within an image. Each region
corresponds to a localized entity (e.g., an object or a salient
scene element) and is represented by a high-dimensional
embedding that captures appearance, attributes, and semantic
information [13] [5]. These structured, region-level features act
as concept-level abstractions, translating raw pixel data into
semantically meaningful units closely aligned with linguistic
tokens [10] [14]. By incorporating pretrained object detectors,
which have already learned to identify and classify visual
elements, this approach leverages prior pretraining domain
knowledge and aligns visual features more directly with tex-
tual concepts, improving fine-grained grounding, contextual
reasoning, and cross-modal understanding [4] [5].

Early object detection architectures such as Faster R-CNN
[11] for visual feature extraction utilized a convolutional
neural network (ResNet-101) [15] for initial image processing
to produce dense feature maps capturing high-level visual pat-
terns.A Region Proposal Network (RPN) [11]—a lightweight
neural module—analyzes these feature maps to generate a
small set of high-quality candidate bounding boxes, effectively
highlighting regions that are likely to contain objects or other
salient elements.Each proposed region is then extracted and
refined through methods such as Region of Interest Pooling
[16] or Region of Interest Align [12], resulting in final region-
level feature vectors. These vectors serve as semantically rich,
spatially grounded embeddings. When integrated with textual
inputs, they enable VLMs to perform more sophisticated
multimodal reasoning and interpretation.

The Bottom-Up and Top-Down Attention model [10] intro-

duced a key advancement in Vision-Language Models (VLMs)
by refining how object-centric visual features are integrated
with linguistic context. Earlier VLMs typically relied on static
object-level embeddings produced by object detection archi-
tectures [10] [15]. In contrast, the Bottom-Up and Top-Down
approach adds a dynamic, context-aware attention mechanism
that adjusts these visual representations based on input lan-
guage.In the bottom-up stage, a pretrained object detector
(such as Faster R-CNN with a ResNet backbone) processes the
image to identify salient regions, each representing an object
or a meaningful scene component. These region-level embed-
dings function like visual tokens, capturing object, attribute,
and relational information in a form that can be aligned with
linguistic information.During the top-down stage, the learned
attention module—an LSTM guided by language inputs like
partial captions or user questions—integrates these visual
tokens with the given text. By comparing the language input to
each region-level embedding, the attention mechanism assigns
attention weights that highlight the most relevant parts of
the image. This process selectively emphasizes certain visual
features, allowing the model to focus on image regions most
relevant to the current linguistic query.By dynamically refining
visual representations based on textual context, the Bottom-Up
and Top-Down Attention model facilitates more contextually
grounded, coherent multimodal reasoning. This improvement
in the integration of visual and linguistic information enhances
the model’s performance on tasks such as image captioning
and visual question answering.

VILBERT [4], LXMERT [5], and UNITER [17] represent
key advancements in Vision-Language Models (VLMs) that
build upon the object-centric foundation. While earlier ap-
proaches paired a static set of region-level object embeddings
(generated by a Faster R-CNN detector [11]) with textual
inputs, the newer models move towards transformer-based
architectures [18] for more robust multimodal integration. In-
stead of relying on attention modules or sequential processing
to combine pre-extracted visual embeddings and textual inputs,
VILBERT [4], LXMERT [5], and UNITER [17] adopt trans-
former architectures designed to jointly model both modalities.
Transformers excel at capturing long-range dependencies and
complex interactions using self-attention and cross-attention
layers. By representing both text tokens and object-level
features as visual tokens within this framework, these models
establish a shared embedding space where language and vision
can interact and influence each other. While the Bottom-Up
and Top-Down approach [10] introduced dynamic attention
over static region embeddings, transformer-based VLMs apply
iterative layers of attention. This iterative process continually
refines and contextualizes the joint representation, allowing
textual and visual modalities to guide and reshape each other’s
encodings. As a result, these models produce contextually
enriched multimodal embeddings, leading to improved perfor-
mance in cross-modal tasks such as image captioning, visual
question answering, and multimodal reasoning.



2) Patch-based Visual Feature Extraction: Patch-based (or
patch-level) visual feature extraction represents a fundamental
shift from object-centric approaches [3]. Instead of detecting
and analyzing predefined objects or object-centric regions
defined by bounding boxes [11], [12], this method uniformly
divides the image into a fixed grid of patches. Each patch
serves as a discrete visual token, and a model encodes these
patches into embeddings that represent the entire image at
a uniform level of granularity [3], [19]. By utilizing a grid
of patches rather than preselected objects, Vision-Language
Models gain more flexibility [20]. They can dynamically
focus attention on any part of the image, rather than being
limited to regions identified by an object detector. This patch-
based methodology supports a more fine-grained, context-
aware exploration of the visual scene [1], allowing models
to capture subtle details and relationships that object-centric
methods might overlook.

Object-centric (Region-based) visual feature extraction uti-
lizes object detectors—such as R-CNN, Faster R-CNN, or
Mask R-CNN operating within a convolutional framework
wherein stacked convolutional layers capture hierarchical local
spatial patterns, and a region proposal module identifies candi-
date bounding boxes likely to contain salient objects. Special-
ized modules classify and refine these proposed regions gen-
erating object-level feature embeddings [12] [10]. While this
approach is effective for object detection and classification,
certain limitations and constraints exist within the methodolgy.
The rigid structure of predefined steps (proposal generation,
region pooling, classification) resulted in limited adaptability
and end-to-end optimization [11]. A constrained pre-training
object vocabulary may reduce the model’s capacity to gener-
alize beyond known categories, inhibiting recognition of novel
or subtle visual information [10] [21]. Convolution-based
feature extraction lacks the dynamic flexibility to reweight
attention across an image, limiting the model’s ability to
emphasize different regions dynamically, binding the model
to predefined concepts and localized feature maps rather than
a more context-aware understanding of visual input [22] [23].

The Vision Transformer (ViT) [3] marks a notable ad-
vancement in visual feature extraction by implementing patch-
level tokenization in combination with a Transformer [18].
Unlike previous methods that relied on object-centric pro-
cesses (e.g., bounding boxes, region proposals) or convolu-
tional filters—both imposing strong inductive biases about
image structure [11] [24], ViT treats images as sequences of
uniformly partitioned patches. This patch-level tokenization
treats every portion of the image as an equally valid source
of information, eliminating the need for predefined object
annotations and manually created semantic boundaries.

[3] In the Vision Transformer (ViT) , uniform patch
tokenization is performed by evenly subdividing the input
image of dimension H x W x C into a grid of non-overlapping
patches of a fixed size.The input image is partitioned into

% X % patches, each of size Px P xC'. These patches are then

flattened into 1D vectors and linearly projected into a common
embedding dimension, ensuring that each patch is represented
as a discrete token.ViT adds learnable positional embeddings
to each patch embedding to incorporate positional information
as spatial context is lost once the image has been fragmented
into tokens. [18] This process transforms the image into a
sequence of patch-level embeddings with positional encodings,
which is then passed to a Transformer encoder.By applying
self-attention over these patch tokens, the ViT model can learn
to focus on the most relevant image regions for a given task,
[25] eliminating the need for predefined object boundaries,
specialized detectors, or convolutional filters.

[25] By relying on patches rather than explicit object
proposals or convolutional filters, ViT enables end-to-end
training and reduces reliance on external proposals, bounding
boxes, or explicitly annotated object categories. [3] The repre-
sentation is consistent across different input sizes and aspect
ratios, simplifying adjustments for new tasks or datasets. As a
result, ViT can scale more naturally, allowing the Transformer
to learn directly from raw pixel patches without requiring
predefined categories or specialized modules.

[3] A key advantage of the patch-based visual feature
extraction methodology is its natural alignment with the token-
based representations utilized in language models. By repre-
senting both images and text as sequences of tokens—patch
embeddings for images and word or subword embeddings
for text—both modalities share a common, uniform input
structure, allowing for a single [18] [20] Transformer to
process visual and linguistic data using the same self-attention
mechanisms, eliminating the need for different feature extrac-
tion methods or specialized modality bridging or alignment
mechanisms. [7] The model considers text and images as
different modalities within the same tokenized representation
space instead of fundamentally dissimilar data types, encour-
aging the model to learn contextually informed alignments
between patches and words assisting in multimodal reasoning
and understanding.

3) Hierarchical-Patch-based Visual Feature Extraction:
Hierarchical Patch-Based Visual Feature Extraction extends
the patch-level methodology utilized in Vision Transformer
(ViT)-based architectures by introducing a structured, multi-
scale image representation process across multiple model
stages. [26] Rather than relying on a single spatial resolution
of uniformly sized patches, this approach progressively refines
or aggregates patch embeddings as they advance through
successive transformer encoder layers. [26] Each encoder
stage operates at a distinct spatial scale or token resolution,
constructing a hierarchical latent space where early layers
focus on encoding fine-grained local features, while deeper
layers integrate these representations into more abstract, se-
mantically rich embeddings. By extracting and refining visual
features at multiple scales, the model preserves the modality-



independent advantages of patch tokenization while simulta-
neously leveraging the multi-scale, context-sensitive properties
of convolutional neural networks (CNNs). This hierarchical
integration of local and global contexts enhances the model’s
adaptive visual reasoning, enabling it to capture intricate visual
details at lower layers and form higher-level, domain-relevant
abstractions at upper layers.

[26] The Swin Transformer represents a significant pro-
gression in the patch-based visual feature extraction paradigm
introduced by the Vision Transformer (ViT). While ViT
processes images as sequences of uniformly sized patches
and applies global self-attention at every layer—an approach
that becomes computationally inefficient for high-resolution
inputs—Swin addresses these limitations by implementing a
hierarchical patch representation and localized attention mech-
anisms. This hierarchical architecture reduces computational
complexity, enhances scalability and also facilitates the con-
struction of contextually enriched and semantically structured
visual representations. As a result, the Swin Transformer’s
architecture is well-suited for multimodal reasoning as efficient
integration of visual and linguistic information is essential.

The Swin Transformer progressively merges patches across
successive stages, unlike the Vision Transformer (ViT), which
maintains a fixed patch size and resolution throughout its entire
architecture [26] [3]. Initially, the Swin Transformer operates
on a fine-grained grid of patches directly extracted from the
input image. As the network advances, these patch embeddings
are concatenated and linearly projected, effectively increasing
the spatial resolution of each patch and simultaneously re-
ducing the token count along each spatial dimension at each
merging step [27].This hierarchical downsampling similar to
spatial pooling or striding in convolutional neural networks
(CNNs) produces a multi-level representation in which early
layers encode fine-grained local patterns, while deeper layers
capture increasingly global and semantically enriched features
[23] [26].By representing images at multiple scales and pro-
gressively merging patches, the Swin Transformer produces a
more semantically structured visual feature hierarchy, which
is effective for multimodal reasoning in vision-language tasks.
At lower levels, the model preserves detailed local information
that can be directly associated with specific linguistic tokens,
facilitating explicit mappings between textual elements and
their corresponding image regions, attributes, or objects. At
higher levels, the more abstract visual embeddings naturally
align with broader semantic concepts such as scene categories,
object relationships, and thematic contexts [1]. This multi-
scale alignment enables the model to transition from pixel-
level details to generalized semantic representations, enhanc-
ing contextually grounded and semantically rich multimodal
reasoning.

Large-scale multimodal systems, exemplified by PaLM-E,
represent a further advancement in hierarchical patch-based
feature extraction and vision-language integration. While ar-

chitectures such as the Swin Transformer establish robust,
multi-level visual representations that readily align with lin-
guistic inputs, PaLM-E extends these principles through in-
creased model capacity and data complexity. By integrating
hierarchical, patch-based embeddings with large language
models (LLMs), PaLM-E effectively processes and infers
over multimodal inputs, capturing more intricate relationships
between visual features and linguistic context. This approach
generates richer and more semantically sophisticated multi-
modal representations, enhancing grounded language under-
standing, enabling zero or few-shot inference, and improving
cross-modal reasoning capabilities [26] [28] [29].

[29] PaLM-E advances hierarchical patch-based feature
extraction by utilizing a pretrained vision encoder—commonly
a Vision Transformer (ViT) or a hierarchical variant such as the
Swin Transformer—that operates on patch-level embeddings.
The encoder segments the input image into a grid of non-
overlapping patches and transforms each patch into a visual
token via flattening and linear projection. In a standard ViT,
global self-attention is applied uniformly across all patches,
whereas hierarchical architectures like the Swin Transformer
progressively merge patches at deeper layers [3] [26].This
hierarchical merging produces a multi-scale representation that
transitions from low-level visual features, such as textures and
colors, in the early layers to semantically enriched, context-
sensitive abstractions, consisting of objects and spatial rela-
tionships, at higher layers. This layered image representation
enables more flexible and adaptive visual encodings, with
lower layers capturing granular pixel-level information and
upper layers forming conceptually grounded, context-aware
representations.

By projecting hierarchically structured visual embeddings
and linguistic tokens into a unified latent space, PaLM-E
constructs a joint representation that enables the pretrained
PalLM language model to semantically ground and contextu-
alize visual features. Within this shared representation, low
and mid-level image attributes (e.g., texture, color, geometric
configurations) are mapped onto higher-level semantic and
relational categories acquired through large-scale language
pretraining [28] [29]. The hierarchical organization of PaLM-
E’s vision encoder allows the language model to dynamically
query and integrate information across multiple abstraction
levels. At the lowest layers, fine-grained patch embeddings
support detailed perceptual inferences, while intermediate
layers merge patches into object-level tokens that serve as
discrete, semantically meaningful units for language-guided
reasoning. At the highest layers, the model captures broader
contextual relationships and spatial arrangements, which can
be aligned with conceptual linguistic information to facilitate
more advanced, context-aware inferences. This hierarchical
encoding and unified token-based multimodal alignment en-
able PaLM-E to leverage linguistic information for positional
visual reasoning, enabling coherent and semantically grounded
multimodal reasoning that integrates pixel-level information



with higher-order visual abstractions. [28] [29]

B. Feature Space Organization

Feature Space Organization is the design and structuring
of the representational spaces in which different data types
such as images, text, or multimodal content are embedded
and compared. In Vision-Language Models, feature space
organization is critical consideration as it determines how
visual and linguistic information are aligned, integrated, and
leveraged to achieve sophisticated reasoning capabilities. By
establishing a shared embedding space where text and image
features can naturally interact, models are better equipped to
handle tasks mulitmodal tasks such as image captioning, visual
question answering, and scene understanding. This alignment
also improves the model’s ability to generalize across domains,
as a coherent feature space facilitates transfer learning and
adaptation to new tasks with minimal retraining.

1) Distinct Modal Feature Spaces: Distinct Modal Feature
Spaces represent a paradigm in which visual and textual
modalities are mapped into seperate, unimodal embedding
spaces. Under this framework, image and text data streams
are processed in isolation: a vision encoder (e.g., a Con-
volutional Neural Network or Vision Transformer) projects
visual inputs into a dedicated latent vector space, while a
language model encodes linguistic tokens into a separate,
non-overlapping embedding space. By deferring cross-modal
integration, this approach preserves modality-specific semantic
representations, structural priors, and inductive biases.Vision-
Language Models (VLMs) such as CLIP, VILBERT, and
LXMERT implement this paradigm. For example, CLIP uti-
lizes independent encoders for images and text, integrating
their embeddings only at late stage via a contrastive alignment
objective. Similarly, VILBERT and LXMERT maintain distinct
feature representations for image regions and language tokens
before merging them through co-attentional or cross-modal
transformer layers. While this delayed multimodal alignment
ensures that each modality’s features remain semantically
coherent, it also requires additional fusion mechanisms—such
as cross-attention modules or contrastive objectives—to unify
these specialized embeddings into a shared, task-relevant latent
space. Consequently, the late-fusion strategy introduces in-
creased architectural complexity, computational overhead, and
potentially longer inference and training times.

2) Unified Feature Spaces: Unified Feature Spaces (Shared
Embeddings) represent a paradigm shift from earlier Vision-
Language approaches that maintained distinct modality-
specific representations toward architectures where visual and
textual data share a common, modality-independent embed-
ding space. Instead of separately encoding images and text
and then aligning these representations at a later stage, unified
methods embed both modalities into a single latent space
from the outset, enabling a single model to handle multimodal

inputs consistently without the need for specialized alignment
or late-fusion.

One of the key concepts of Unified Feature Spaces is
the representation of visual and textual modalities as token
sequences.For example, images are decomposed into patch-
level tokens and text is tokenized into subword units. By
treating pixels and words as tokens from a shared, fixed token
set, models such as PALM-E and BLIP-2 can process all tokens
through the same Transformer-based encoder architecture.
This uniform tokenization pipeline eliminates the need for
modality-specific processing, ensuring a consistent, modality-
invariant representation space.Once visual and textual data are
transformed into a common tokenized form, the model’s multi-
head self-attention and feed-forward layers operate over all
tokens simultaneously. Without separate pipelines or dedicated
fusion modules, the self-attention mechanism implicitly learns
cross-modal relationships. The parameters and attention heads
collectively identify patterns, correspondences, and correla-
tions between image patches and textual tokens, allowing the
model to align and integrate information from both modali-
ties.This approach results in multimodal representations that
capture cross-modal semantics, and by consolidating both
modalities into a shared latent space from the outset, it si-
multaneously simplifies architectural complexity and produces
more coherent and richly integrated multimodal embeddings.

3) Contrastive-Aligned Feature Spaces: Contrastive-
Aligned Feature Spaces utilize contrastive learning to struc-
turally arrange visual and textual embeddings within a unified
latent representation.In this paradigm, the model optimizes
a contrastive loss (e.g., InfoNCE or margin-based ranking
loss) which brings semantically related image-text pairs (e.g.,
an image and its matching caption) closer together, while
pushing apart mismatched pairs. By enforcing these relational
constraints, the model’s parameters encode semantic similar-
ity directly into the spatial arrangement of embeddings.As
training proceeds, conceptually related items—such as various
depictions of a specific object and corresponding linguistic
descriptors—naturally form localized clusters. These clusters
then aggregate into larger, coherent latent spaces that capture
high-level semantic structures. This topological clustering or-
ganization enables transitive alignment. For example, if image
A is aligned with text A, and text A is semantically related to
text B, then image A will reside in close proximity to text B
as well. Such transitive relationships enhance global semantic
consistency within the embedding space.

C. Vision-Language Integration Architectures

1) Pre-Transformer: Before the widespread adoption of
Transformer-based models, vision-language integration archi-
tectures predominantly relied on convolutional neural networks
(CNNs) for visual feature extraction and recurrent neural
networks (RNNs) for linguistic encoding. In these frame-
works, an input image was first processed through a CNN



pretrained on large-scale image classification datasets such as
ImageNet to produce a fixed-dimensional vector representation
capturing high-level visual semantics. Concurrently, textual
inputs were transformed into continuous vector embeddings
and subsequently passed to RNN-based encoders (e.g., LSTMs
or GRUs) to model syntactic and semantic dependencies
across text [30] [31] [32]. During this era, the integration of
visual and linguistic modalities was largely limited to late-
stage fusion operations, wherein the independently obtained
feature representations were combined using relatively sim-
ple mechanisms such as concatenation, averaging, element-
wise multiplication, or linear projections [33].The models
inherently lacked fine-grained alignment strategies due to the
absence of explicit mechanisms to focus attention on specific
regions or objects within the visual input that corresponded to
specific linguistic elements, resulting in images being treated
at a global level, thereby limiting their ability to highlight
salient objects or focus regions to specific linguistic elements
[30].

Early fusion strategies introduced limited multimodal inter-
action by integrating visual and textual features at the initial
stage of the decoding pipeline [30] [32]. For example, a global
CNN-derived image embedding could be concatenated directly
with the initial hidden state of an RNN-based language model,
thereby placing both modalities into a shared representational
space from the outset [32].As the fusion mechanism is fixed
and non-adaptive, it does not enable dynamic adjusting of
the relative contributions of each modality as the sequence
progresses. As a result, patterns and features learned pre-
maturely were reinforced, propagating low-level noise and
incomplete representations throughout the model’s layers. This
static and non-adaptive early fusion approach constrained the
complexity, accuracy, and quality of cross-modal grounding,
limiting the model’s ability to flexibly and effectively integrate
information across vision and language.

Late fusion strategies delayed the integration of visual and
linguistic modalities until both modalities’ latent representa-
tions had been fully encoded. In this approach, the image
encoder (e.g., a CNN) and the language encoder (e.g., an
RNN or LSTM) independently extract high-level embeddings,
which are subsequently combined only after each modality has
achieved a semantically rich representation. This delay miti-
gated premature cross-modal interference, ensuring that each
modality’s embedding space has fully converged, normalized,
and aligned prior to fusion, thereby enhancing the reliability
and interpretability of the unified representation [31]. The lack
of intermediate communication or joint attention mechanisms
during encoding prevented the visual and textual encoders
from influencing each other’s internal representations, result-
ing in a unified representation that captures fewer fine-grained,
context-sensitive relationships between the modalities. [30]

One of the key advancements in the pre-Transformer era
was the integration of adaptive, sequential language models

with CNN-based visual feature extractors. Unlike early or late
fusion strategies—where linguistic representations remained
fixed and were fused at a predetermined stage—recurrent ar-
chitectures (e.g., LSTMs or GRUs) enabled dynamic updating
of the language embedding throughout the decoding process.
By incorporating CNN-derived visual embeddings at each
time step, the model’s hidden state could iteratively refine its
predictions based on previously emitted tokens and evolving
visual context [30] [32]. This iterative decoding paradigm
facilitated the incremental integration of visual information,
allowing lexical and syntactic decisions to be continuously
adjusted as the sentence progressed. As a result, object-level
grounding and fine-grained semantic alignment between vision
and language were more effectively achieved. This adaptive,
feedback-driven approach surpassed the limitations of static
fusion methods, resulting in more contextually coherent and
semantically integrated multimodal reasoning. [34]

This paradigm is exemplified by the Show and Tell [30]
and Show, Attend and Tell [35] architectures, both of which
introduce adaptive, sequence-aware language models to en-
hance the integration of visual and linguistic features. Show
and Tell leverages a CNN pretrained on large-scale image
recognition datasets (e.g., ImageNet) to encode the input image
into a fixed-dimensional global embedding, effectively captur-
ing high-level scene attribute information without explicitly
identifying specific objects or regions. This global image
representation is passed to an LSTM-based language decoder
by either initializing the decoder’s hidden state with the image
embedding or concatenating it with the embedding of the first
word token [30]. As the LSTM iteratively generates tokens, it
dynamically conditions each subsequent output on its evolving
hidden state—which captures previously emitted tokens and
their linguistic dependencies—while continuously referencing
the global visual embedding for contextual grounding. This
approach outperforms static, single-step predictions by incre-
mentally refining lexical and syntactic decisions, resulting in
semantically coherent and contextually grounded captions.

Building upon these foundations, the Show, Attend and
Tell [35] model introduces a key enhancement being a spatial
attention mechanism. Rather than relying on a global image
embedding, Show, Attend and Tell leverages CNN-encoded
image features extracted at multiple spatial locations (e.g.,
feature maps from a convolutional layer) and learns to focus
selectively on particular image regions at each timestep in the
decoding process. This attention-based framework enables the
LSTM decoder to focus on visually salient objects or attributes
as needed, providing a more fine-grained and context-sensitive
alignment between visual content and linguistic output. By
dynamically shifting focus across different parts of the image
while generating each word, the model achieves more precise
object-level grounding and produces captions that are contex-
tually consistent and visually descriptive. The incorporation of
the attention mechanism represents a key technical develop-
ment in adaptive, feedback-driven decoding being augmented



with fine-grained spatial awareness to achieve more semanti-
cally integrated multimodal reasoning. [35]

While earlier models, such as Show and Tell [30], gen-
erated coherent textual descriptions, they relied on global,
image-level embeddings that constrained fine-grained vision-
language alignment. This coarse representation limited the
ability to associate specific linguistic elements with local-
ized image regions, limiting detailed cross-modal grounding
at the object or region scale. Deep Visual-Semantic Align-
ments for Generating Image Descriptions [31] addresses this
limitation of global scene-level embeddings by introducing
a more granular and context-sensitive approach to vision-
language integration. Rather than encoding an entire image
as a single, undifferentiated feature vector, the model utilizes
region proposal methods (e.g., selective search) to isolate
candidate bounding boxes, each capturing distinct visual ob-
jects or regions of interest. These object-level patches are
then processed through a pretrained CNN (such as VGGI16
or AlexNet) to produce region-centric feature embeddings,
moving from a coarse global representation toward finer,
localized visual descriptors.On the linguistic side, the approach
similarly partitions textual input into semantically salient
fragments—most notably noun phrases—identified through
syntactic parsing tools (e.g., Stanford CoreNLP) [31]. These
phrases are embedded into a continuous vector space (e.g., via
word2vec), resulting in phrase-level textual embeddings that
have the same level of granularity as compared to the object-
level visual features. By representing both modalities as sets of
discrete, semantically meaningful entities, the model enables
a richer cross-modal mapping that surpasses simplistic, scene-
level alignment. [31]

A key technical component is the projection of both region-
level visual features and phrase-level textual embeddings into
a shared multimodal embedding space, where the similarity
between any visual region and textual phrase can be directly
determined [31]. The model is trained using a structured max-
margin loss ranking objective designed to increase the sim-
ilarity between correctly paired region-phrase matches while
decreasing it for mismatched pairs. This optimization shapes
a topologically meaningful embedding space in which related
visual and linguistic elements form coherent clusters, facil-
itating more robust and interpretable vision-language align-
ments.By integrating object-level visual embeddings, phrase-
level textual representations, and a discriminative max-margin
ranking objective, this approach achieves more precise object-
level grounding and semantic integration.

2) Two-Stream (Multi-Stream) Transformer: Building
upon the pre-Transformer era’s developments in fine-
grained alignment and iterative, context-aware decoding,
vision-language integration architectures evolved toward
Transformer-based frameworks that more explicitly separate
unimodal encoding from multimodal fusion.Rather than using
a single model to process both visual and textual data jointly,

these architectures introduced Two-Stream (or Multi-Stream)
Transformer frameworks to leverage modality-specific encod-
ing pipelines. [18] In this configuration, each modality—visual
and textual—is initially handled by a dedicated Transformer
encoder stack, allowing each stream to undergo self-attention
and feed-forward transformations specific to its unique repre-
sentational structure.

[4] [S] The visual stream utilizes pre-trained object de-
tectors (e.g., Faster R-CNN) operating on large-scale im-
age datasets generate region-level feature embeddings that
highlight salient objects or areas within the scene. These
embeddings are refined by a Transformer-based visual en-
coder, which leverages multi-head self-attention, feed-forward
transformations, and layer normalization to capture intra-visual
relationships such as object co-occurrence pattern, spatial con-
figuration, and attribute distribution information at a granular
level. Similarly, the language stream utilizes a Transformer-
based text encoder (e.g., a BERT-style architecture) to produce
contextualized token embeddings that model syntactic and
semantic dependencies across the input text. This unimodal
separation ensures that each stream’s encoder stack is focused
on modality domain-specific abstractions unconstrained by the
noise or structural biases of the other modality. [36] [37]
After both streams have independently produced semantically
rich, contextualized representations, a dedicated cross-modal
attention or co-attention module fuses the information, es-
tablishing direct correspondences between visual regions and
linguistic tokens. By dynamically adjusting attention weights,
the model identifies and aligns semantically related elements
from the two modalities, enhancing multimodal reasoning and
improving semantic grounding.

[4] VILBERT represents a significant advancement in two-
stream (multi-stream) Transformer-based Vision-Language
(VL) integration. Adapting BERT’s representation learning,
ViLBERT jointly models visual and textual modalities using
parallel Transformer encoder stacks. By deferring multimodal
fusion until after unimodal representations have been learned,
VILBERT facilitates more accurate and fine-grained semantic
alignment across modalities.

[4] In ViLBERT, the visual stream utilizes a pretrained
object detector (e.g., Faster R-CNN) to isolate and encode
region-level features such as bounding boxes and associated
embeddings that capture object appearance, attribute, and spa-
tial relational information. These object-centric embeddings
serve as visual tokens and are refined by a Transformer-based
visual encoder utilizing multi-head self-attention and feed-
forward layers. Through this process, the model contextualizes
each region-level embedding, capturing global scene context
and complex inter-object dependencies.Simultaneously, the
linguistic stream processes tokenized textual inputs enriched
by token, positional, and segment embeddings. A BERT-
like Transformer encoder applies multi-head self-attention and
feed-forward transformations to generate contextually enriched



token embeddings, effectively modeling syntactic structure,
semantic content, and lexical relationships within the text. By
independently refining visual and linguistic inputs, VILBERT
ensures that each modality is internally coherent and seman-
tically rich before cross-modal interaction.

[4] A key architectural innovation is ViLBERT’s ap-
proach to iterative multimodal fusion. Rather than confining
cross-modal integration to the input or output layers, VilL-
BERT interleaves the unimodal self-attention layers with co-
attentional Transformer layers that implement bidirectional
cross-attention. [37] In VILBERT’s co-attentional layers, at-
tention operates bidirectionally between the visual and lin-
guistic streams. During vision-to-language (V—L) attention,
visual embeddings function as queries, while linguistic em-
beddings serve as keys and values. The model utilizes the
visual representations as reference points to determine which
linguistic elements are most relevant, thereby enriching the
visual latent space with semantic information derived from the
text. Conversely, during language-to-vision (L—V) attention,
linguistic embeddings act as queries, and visual embeddings
provide keys and values. In this phase, the textual represen-
tation selects salient image regions to ground the semantic
concepts expressed by the words.Through repeated rounds of
V—L and L—V attention, each modality iteratively influences
the other, adjusting and refining its representations based on
received complementary information. This iterative, bidirec-
tional querying process aligns and enhances both the visual
and linguistic embeddings, resulting in a mutually reinforced
contextually rich and semantically precise multimodal rep-
resentation better integrated across the vision and language
modalities.

[5] LXMERT utilizes a two-stream, Transformer-based
framework that explicitly segments unimodal representa-
tion learning from subsequent multimodal integration. This
approach differs from VIiLBERT, which interleaves cross-
modal interactions at earlier stages of the encoding process.
LXMERT ensures robust, domain-specialized embeddings in
both linguistic and visual streams by deferring multimodal
fusion until after the unimodal encoders have fully refined
their respective representations. LXMERT can be considered
as a complementary advancement to VILBERT as both models
introduce similar two-stream, Transformer-based architectures
for vision-language integration, but they implement different
strategies for integrating the modalities. VILBERT interleaves
unimodal and cross-modal attention early, aiming for con-
tinuous mutual influence throughout the encoding process.
LXMERT, postpones cross-modal fusion until each modality
has been independently encoded resulting in a more modular
and segmented multimodal integration.

[5] For the linguistic stream, LXMERT’s language encoder
follows a BERT-like Transformer architecture. It processes
tokenized input augmented with token, positional, and seg-
ment embeddings, using multi-head self-attention and feed-

forward layers to capture syntactic dependencies and semantic
relations among words. In parallel, the visual encoder refines
region-level features derived from a pretrained object detector.
Through Transformer layers, the visual stream establishes
meaningful scene-level context by modeling spatial and se-
mantic relationships between proposed objects or regions. This
unimodal processing phase for vision and language streams,
ensures that each modality attains a rich, domain-specialized
representation.

[5] After independently encoding each modality
LXMERT’s cross-modality encoder integrates these
unimodally refined features using co-attentional Transformer
layers that implement bidirectional cross-attention. Linguistic
embeddings query visual features to ground abstract textual
concepts in image regions, while visual embeddings reference
linguistic tokens to reinforce semantic clarity. By iteratively
applying bidirectional query-key-value mechanism co-
attentional operations, LXMERT incrementally aligns both
modalities within a unified embedding space, resulting in
context-rich, and semantically integrated vision-language
representations.

3) Single-Stream (Unified) Transformer: Single-Stream
(Unified) Transformer architectures mark a developmental
step in Vision-Language (VL) modeling by eliminating the
separation of unimodal encoding and delayed fusion. In these
unified frameworks, the model processes both visual and
textual inputs simultaneously into a single Transformer-based
encoder, allowing them to interact continuously at every layer.
Instead of having distinct pipelines for vision and language,
unified approaches interleave image-derived features (e.g.,
region-level embeddings or patches extracted by a CNN or
a Vision Transformer) with textual tokens in a shared input
sequence.

A key technical feature of unified architectures is the
application of self-attention over a joint set of multimodal to-
kens. Each Transformer layer considers both linguistic tokens
and visual elements as part of the same input, enabling the
attention heads to discover fine-grained correspondences and
dynamically align words, phrases, and object-level features at
multiple abstraction levels. This design contrasts with two-
stream models that first produce unimodal representations and
only later integrate them through a separate co-attentional
mechanism. Early and continuous modality interaction allow
unified Transformers to more efficiently learn visual-linguistic
representations, improving semantic grounding, object-level
alignment, and context-sensitive reasoning. [38]

[14] VisualBERT is an key development in single-stream
(unified) Transformer-based architecture for vision-language
integration, as it integrates visual and textual inputs from the
outset instead of initial unimodal representation derivation and
subsequent fusion.VisualBERT’s single-stream architecture in-
tegrates textual tokens and region-level visual embeddings into



a unified sequence before passing them into a Transformer-
based encoder, enabling the self-attention mechanism to model
visual-linguistic relationships continuously at every layer.By
placing both text and image representations in the same
input sequence, each embedding—whether it originates from
language or vision—is processed through the same stack of
Transformer layers [37]. Within each layer’s multi-head self-
attention, queries, keys, and values are derived from this joint
set of multimodal tokens, allowing every token to directly
attend to relevant elements from both modalities.

[14] As the model progresses through successive lay-
ers, the embeddings are iteratively updated, and cross-modal
correspondences are refined.For example, a linguistic token
representing a noun can attend to a corresponding image
region to clarify its visual semantics, while visual embeddings
derived from detected objects can attend to words or phrases
that provide context and meaning. This iterative refinement
negates the need for separate unimodal pipelines or late-
stage fusion steps, as every layer inherently performs mul-
timodal integration through shared self-attention.Each token’s
representation encodes a rich, contextually informed blend of
linguistic and visual information. This continuous, layer-by-
layer alignment encourages fine-grained semantic grounding
and enhances context-sensitive multimodal reasoning.

[17] UNITER extends the single-stream (unified)
Transformer-based vision-language modeling paradigm intro-
duced by models such as VisualBERT [14] by incorporat-
ing explicit spatial information and refining its multimodal
embedding strategy. UNITER jointly processes textual tokens
and region-level image embeddings—extracted by a pretrained
object detector within a single Transformer encoder, allowing
continuous cross-modal interaction at every layer.While Vi-
sualBERT treats each detected object region as an isolated
feature vector appended to a text-centric framework, UNITER
augments these visual embeddings with continuous bounding-
box coordinates and integrates them directly alongside tex-
tual tokens into a unified input sequence. This architecture
establishes a coherent multimodal embedding space from the
outset, enabling the Transformer’s self-attention mechanism to
consider both linguistic elements and spatially grounded visual
features simultaneously.

A key architectural improvement is in the encoding of
visual information.While VisualBERT treats each detected
object region as an isolated feature vector, UNITER augments
visual embeddings with continuous bounding-box coordinates,
providing the Transformer’s attention mechanism with explicit
spatial references for each detected object region. As a result,
the model can interpret what objects are present, where they
are located and how they relate to one another in the scene.
[17]

[17] Rather than treating objects as isolated feature vectors,
UNITER integrates both the semantic and spatial dimensions

of visual information into a unified embedding space. By in-
corporating bounding-box coordinates, the model can consider
not what objects are present and also where they are located
and how they relate to one another in the scene [33]. For
example, in an image captioned as “A man in a red jacket
standing on skis next to a black dog,” UNITER receives
embeddings for the detected objects—man, red jacket, skis,
black dog—along with their bounding-box coordinates. This
allows the Transformer to align the textual references precisely
with the corresponding image regions. For instance, the token
“man” and the phrase “red jacket” are associated with the
correct object embedding and the bounding-box that pinpoints
the man wearing that jacket [32]. Similarly, the phrase “next
to” becomes spatially grounded, enabling the model to focus
attention to the relative position of the dog’s bounding box in
relation to the man.

[17] As UNITER arranges visual features, spatial co-
ordinates, and textual embeddings into a single multimodal
sequence, the Transformer’s self-attention mechanism treats all
inputs—regardless of their modality—as part of one coherent
set of tokens. This unified format ensures that no single
modality is prioritized or processed in isolation. Instead, the
attention heads dynamically weigh and align relevant linguistic
and visual elements at every encoding layer, drawing connec-
tions between words and their corresponding image regions
while also considering the spatial relationships encoded in
bounding-box coordinates [33]. Queries, keys, and values are
derived from this unified set of tokens, allowing the attention
heads to naturally weigh elements from both modalities and
refine alignments at every encoding layer [36]. A textual token
such as “man” can issue queries that highlight the visual
embeddings and bounding-box coordinates corresponding to
that concept, while visual tokens can similarly attend to lin-
guistic elements that provide semantic context or clarify object
attributes [38]. By eliminating the need for separate or delayed
fusion steps, the model supports direct and continuous cross-
modal interactions [32]. This integrated approach enables
the Transformer’s self-attention layers to iteratively discover
and strengthen meaningful correspondences between language
and vision, producing richer, more semantically grounded
multimodal representations that enhance vision-language per-
formance.

[20] ViLT presents a streamlined, single-stream (unified)
vision-language (VL) modeling paradigm that removes the
reliance on region-level object detectors common in earlier
models by entirely avoiding region-level object detection and
instead implementing a patch-based embedding strategy in-
spired by the Vision Transformer (ViT).Rather than extracting
object-centric embeddings through a pretrained detector—an
approach that introduces complexity, fixed vocabularies, and
preprocessing overhead [23]—ViLT divides input images into
grids of patches and linearly projects each patch into an
embedding vector, effectively treating them as visual tokens
[7], enabling the model to learn directly from raw, domain-



independent pixel-level data [27], promoting a more generic
and scalable representation.

[20] VILT streamlines and improves vision-language inte-
gration by eliminating the need for region-level object detec-
tion and adopting a patch-based approach inspired by the Vi-
sion Transformer (ViT) [25] [3]. Instead of extracting features
from predefined object regions, ViLT partitions images into a
grid of patches, each treated as a visual token, and processes
these alongside textual tokens within a single Transformer
encoder. This design frees the model from reliance on fixed
object vocabularies and object detectors, reducing architectural
complexity and overhead. By integrating visual and textual
tokens into a unified multimodal sequence [27], VILT ensures
continuous, layer-by-layer interaction between modalities, al-
lowing words to attend to spatially grounded patches and
image features to incorporate semantic information from text
at every encoding stage. [37] Over successive layers, this
iterative, bidirectional exchange produces richer, more context-
sensitive, and semantically integrated multimodal representa-
tions.

4) Decoupled Vision-Language Encoders with Cross-
Attention Layers: Decoupled vision-language encoders with
cross-attention layers represent a recent architectural paradigm
that aims to balance unimodal specialization and efficient mul-
timodal integration. Each modality—vision and language—is
first processed by its own dedicated encoder,a pretrained trans-
former model such as a ViT or CLIP encoder for images, and
a Large Language Model (LLM) for text, ensuring that both
modality streams produce high-quality, domain-specialized
representations independently and without immediate cross-
modal influence.Once these unimodal representations are ex-
tracted, a lightweight cross-attention interface selectively in-
tegrates the two streams [37]. Rather than merging the en-
coders into a single model or employing deeply interwoven
co-attentional blocks, this decoupled approach introduces a
small number of cross-attention layers to link the visual and
linguistic representations, injecting just enough cross-modal
parameters to align and enhance the combined embedding
space. [27]

This architectural approach preserves the scalability and
modularity of unimodal models by allowing both the vision
and language encoders to be independently improved, up-
dated, or replaced without reengineering the entire multimodal
pipeline. Additionally, utilizing pretrained encoders ensures
that each modality’s representation space is well structured
and semantically rich before cross-modal integration, which
can lead to more effective and stable multimodal alignment.
By decoupling the unimodal encoders and introducing only
a minimal cross-attention interface, the approach streamlines
vision-language integration into a more modular process.This
reduced complexity enables the model to adapt more readily
to improved unimodal components, resulting in more flexible
and scalable vision-language integration approach.

[39] BLIP-2 exemplifies how vision and language models
can be integrated efficiently into Large Language Models
(LLMs) through a decoupled architecture coupled with min-
imal cross-attention layers. Rather than merging the vision
and language components into a single unified pipeline,
BLIP-2 leverages large, independently pretrained unimodal
encoders—such as a frozen vision encoder (e.g., ViT or CLIP)
and a state-of-the-art LLM like LLaMA or Flan-T5—each
already optimized within its respective domain.

[39] BLIP-2 exemplifies how vision and language models
can be integrated efficiently into Large Language Models
(LLMs) through a decoupled architecture coupled with min-
imal cross-attention layers. Rather than merging the vision
and language components into a single unified pipeline,
BLIP-2 leverages large, independently pretrained unimodal
encoders—such as a frozen vision encoder (e.g., ViT or CLIP)
and a state-of-the-art LLM like LLaMA or Flan-T5—each
already optimized within its respective domain.

BLIP-2’s approach utilizes the Q-Former, a small, dedicated
Transformer module that provides a minimal, learnable inter-
face for vision-language integration in LLMs.Instead of tightly
coupling the two modalities, the Q-Former translates the vision
encoder’s output embeddings into query tokens that the LLM
can readily interpret as input text. This approach allows the
LLM to incorporate visual context—such as scenes, objects,
and their relationships—directly into its reasoning process,
all without the need for large-scale multimodal retraining.
In doing so, BLIP-2 augments the LLM’s language-based
reasoning capabilities with visual grounding, enabling it to
generate richer, more context-aware outputs that reflect both
linguistic and visual information.By decoupling the modalities
and confining cross-modal fusion to a lightweight Q-Former
module, BLIP-2 achieves parameter-efficient, dynamic multi-
modal reasoning. BLIP-2 effectively expands the capabilities of
LLMs by integrating robust visual understanding, leading to
more comprehensive and semantically grounded multimodal
reasoning.

III. VISION-LANGUAGE MODELS TRAINING

In the evolution of deep learning, Bidirectional En-
coder Representations from Transformers (BERT) [40], a
Transformer-based [18] architecture, has distinguished itself
in the field of language modeling by significantly outperform-
ing many of its contemporaries and has led researchers to
explore extending its capabilities to visual data processing.
The success of BERT has led researchers to explore extending
its capabilities to visual data processing, leading to cutting-
edge models such as visual-BERT [14] and ViLBERT [4],
which incorporate textual and image markup to achieve even
greater power. The model training strategy focuses on two key
objectives. One task is mask modeling. This task requires the
model to predict the content of partially masked elements in
the input based on context. The model must also investigate



the underlying patterns and logical associations within the
data. The second is the sentence-image prediction task, in
which the model needs to accurately determine whether a
given subtitle accurately portrays the essence of the image to
strengthen the ability to understand and grasp the consistency
between visual and textual semantics. With the synergy of
these dual goals and the unique attention mechanism of the
transformers architecture, which is capable of capturing the
subtle correlations between words and visual cues in complex
data, the model has demonstrated excellent performance in
many key tasks of visual-linguistic fusion, laying a solid
foundation and pioneering the research of visual-linguistic
modeling in the future. The model has demonstrated excellent
performance in many key tasks of visual-linguistic fusion
processing, laying a solid foundation for subsequent visual-
linguistic modeling research and opening up new directions.
With the impressive development of deep learning in computer
vision and natural language processing, the Meta team [41]
has subdivided the latest Transformer-based techniques into
four training paradigms. Notably, these paradigms are not
mutually exclusive, with many approaches relying on a mix
of contrastive, masking, and generative criteria.

A. Contrastive-based VLMs

Contrastive learning is crucial in VLMs as a practical frame-
work for cross-modal alignment. VLMs based on contrastive
learning typically consist of two main components: a visual
encoder and a text encoder. The visual encoder, often built on
convolutional neural networks (CNNs) or visual transformers
(ViTs) [3], extracts high-dimensional embeddings from input
images. The text encoder, in contrast, utilizes pre-trained
language models to convert textual inputs into semantic em-
beddings. Once these embeddings are projected into a shared
high-dimensional space, they are processed by a learnable
projection head to ensure compatibility between the visual and
textual representations. This alignment supports downstream
tasks such as retrieval, classification, and generation.

The central idea of contrastive learning is to efficiently align
visual and textual modalities by maximizing the similarity
of positive sample pairs and minimizing the similarity of
negative sample pairs in a shared latent space. Positive sample
pairs are mapped closer in the latent space; while negative
sample pairs are mapped farther away. The model is trained
to differentiate between similar and dissimilar samples. To
explain this process, Energy-Based Models (EBMs) [42]serve
as a theoretical framework. In EBMs, the goal is to assign
low energy to observed data and high energy to unobserved
data. Specifically, the true data distribution should have low
energy, while noise or other irrelevant data points should have
high energy. This is achieved by representing the “energy” of
input data using an energy function and training the model
to match the data’s energy distribution with the expected
distribution. Several methods, such as Markov Chain Monte

Carlo (MCMC), have been proposed to approximate this
distribution during training. MCMC iteratively finds negative
samples from the model distribution, minimizing predicted
energy. However, direct sampling from the model distribu-
tion is infeasible, which led to the development of Noise
Contrastive Estimation (NCE) [43]. NCE approximates model
sampling by selecting negative samples from a noise distribu-
tion, simplifying training, and avoiding complex normalization
factors. It is widely used in models like Word2Vec [44],
where negative samples are sampled from noisy vocabularies.
NCE improves alignment by optimizing the model’s ability to
distinguish between positive and negative sample pairs. In the
InfoNCE [45] framework, the model further refines alignment
by calculating the cosine similarity between embeddings and
predicting the most likely positive pairs through Softmax while
assigning lower probability to negative pairs. A temperature
parameter in the loss function regulates the sensitivity of the
alignment, balancing the model’s ability to distinguish subtle
semantic differences.

Numerous landmark models combine contrastive learning
with dense alignment techniques, achieving superior perfor-
mance on visual language tasks. Traditional contrastive learn-
ing focuses on instance-level alignment, optimizing global
features by bringing representations of the same instance
closer together and separating representations of different
instances. SimCLR [46], for example, enhances the global
feature representations of images by maximizing the distances
between different samples while minimizing distances between
similar ones. It achieves this by augmenting images (e.g.,
through cropping, rotation, or color changes) and treating these
augmented images as different views of the same instance for
comparative learning. MoCo [47] also optimizes global feature
alignment using a dynamic dictionary to store feature rep-
resentations of different instances, incorporating Momentum
updating to maintain stability during dictionary updates. Con-
trastive Language-Image Pretraining(CLIP) [1], developed by
OpenAl, utilizes 400 million image-text pairs and trains both
visual and text encoders through contrast loss. It treats each
image-text pair as a positive sample while considering all other
combinations in the batch as negative. CLIP excels in zero-shot
learning tasks, using natural language cues for classification
without task-specific fine-tuning. Building on CLIP, A Large-
scale Image and Noisy-text embedding (ALIGN) [7] extends
instance-level alignment by utilizing 1.8 billion noisy image-
text pairs, demonstrating the robustness of contrastive learning
with noisy data. The embeddings generated by ALIGN per-
form well in downstream tasks like retrieval and classification.

These methods emphasize instance-level alignment and
learn overall global features, paying more attention to the
overall semantic information of the data. However, new tech-
nologies such as Dense Image-Text Alignment [48] retain local
details or fine-grained feature expressions and expand this
paradigm by integrating fine-grained correspondences between
image regions and text elements. This alignment method



represents images as region-level embeddings and texts as
word or subword embeddings. The model no longer only
aligns overall embeddings but optimizes region-word or token-
token similarity to achieve finer alignment. The Florence [49]
model proposed by Microsoft is a typical representative of this
technology. Florence achieves dense alignment by calculating
the attention-weighted similarity between visual patches and
text tokens. This mechanism helps the model identify specific
regions in an image and establish connections with relevant
words in the description. The dense alignment strategy signif-
icantly improves performance in object-level retrieval, visual
question answering, and scene understanding tasks.

The impact of contrastive-based VLMs extends beyond
traditional image-text retrieval and text generation tasks. These
models perform exceptionally well in zero-shot classification.
They require no task-specific fine-tuning to achieve effective
domain adaptation.

B. VLMs with Masking Objectives

Masking techniques have an important place in the field of
deep learning, especially in VLMs, where masking goals are
widely used to enhance the cross-modal learning ability of the
models. Masking techniques first originated from Denoising
Autoencoder (DAE) [50], which learns a latent representation
of the data by adding noise to the input data and training
the model to reconstruct the original data. In this framework,
the noise has a spatial structure, which is usually achieved by
masking parts of the data randomly. Masking techniques are
closely related to image inpainting strategies, where the goal
of image restoration is to recover missing or damaged parts
of an image. The approach proposed by Pathak et al. [51] in
2016 utilizes this idea by learning a strong representation of
an image to handle the image restoration task. In the field
of language processing, Masked Language Modeling (MLM)
also has a similar idea, which learns the underlying structure
and grammatical rules of a language by masking certain words
in a sentence and training the model to predict these missing
words. BERT is a typical example of the adoption of the MLM
strategy, which significantly improves the natural language
processing task by randomly masking some of the words and
predicting them at training time, which significantly improves
the performance of natural language processing tasks.

In recent years, masking targets have been gradually in-
troduced into VLMs, facilitating the progress of multi-modal
learning. In VLMs, masked targeting, as a self-supervised
learning method, can effectively deal with the relationship
between different modalities, especially in the task of fusing
text and image information. The basic principle of masked
targeting is to learn a stronger cross-modal representation by
masking a portion of the input and forcing the model to
infer the hidden information from the remaining portion. The
application of masking targets helps to create a stronger link

between vision and language, improving the performance of
the model in complex tasks.

FLAVA [52] is a typical masked target-based VLM that
processes visual and textual data through the synergy of
three core components. FLAVA employs a ViT as an image
encoder that slices the input image into multiple chunks and
linearly embeds them, which are then processed through the
transformer architecture. The text encoder, on the other hand,
tokenizes the text input, embeds it as vectors through the
standard transformer architecture, and outputs hidden state
vectors. FLAVA combines both multi-modal and unimodal
masking modeling losses during training and incorporates
a comparative learning objective to achieve leading scores
on a number of visual, linguistic, and multi-modal tasks.
Oscar [53] is also a successful VLM that combines self-
supervised learning with visual-language masking goals. Oscar
uses “object-level” masking, i.e., it allows the model to learn
how to comprehend and align objects in multimodal data by
masking out certain object regions in the image and hiding the
vocabulary associated with these objects in the text. In this
way, Oscar enhances the link between vision and language,
further improving the performance of visual-text tasks. In the
Oscar model, the masking strategy is not limited to randomly
selecting part of the information in a text or image, but by
strategically selecting and masking certain objects, it helps the
model to better understand the deeper associations between
visual and verbal information.

The introduction of masking objectives makes the training
of VLMs more efficient and flexible. Through self-supervised
learning, the masking strategy not only helps the model to
extract more profound inter-modal relationships but also ef-
fectively improves the model’s generalization ability in multi-
modal tasks. This approach provides new ideas for the integra-
tion of vision and language and lays a theoretical foundation
for future multi-modal learning.

C. Generative-based VLMs

Generative-based VLMs have made significant progress in
recent years, especially in text-to-image, image-to-text, and
cross-modal understanding and generation. Unlike traditional
discriminative models, the core strength of generative models
lies in their ability to understand and create entirely new data
samples, which makes them show great potential in tasks
such as image description generation, visual quizzing, and
image content generation. By jointly modeling the distribution
of image and text data, the generative model is able to
deeply capture and parse the complex and diverse connections
between images and language. This joint learning approach not
only allows the model to have a more precise understanding
of the relationship between the two modalities, but also
demonstrates stronger generalization ability in cross-modal
tasks, thus significantly improving the overall performance.
This generative capability not only enhances the models’



flexibility in visual language tasks, but also allows them to
show greater adaptability and creativity when dealing with
complex multimodal data.

A typical generative visual language model is DALL-E
[54], proposed by OpenAl, which is capable of generating
images associated with textual inputs. DALL-E is based on the
Transformer architecture. It learns deep connections between
image and textual data through co-training. This approach
allows DALL-E to generate semantically accurate and creative
images. It demonstrates the effectiveness of generative models
in visual-verbal tasks. In addition, the Imagen [55] model
employs a similar generative model architecture, but further
improves the quality of the generated images by introducing
techniques such as reinforcement learning. In particular, Im-
agen outperforms DALL-E in the reproduction of details and
textures and is able to generate more detailed and realistic
images, thus performing even better in generative tasks.

Similar to DALL-E and Imagen, Google’s Parti [56] model
focuses on generating high-quality images, especially in the
missing details of the textual descriptions. Parti avoids the
problem of blurry or unclear images that are common in
traditional generative models by progressively refining the
image-generation process. Parti’s uniqueness lies in its latent
space-based generation methodology, which gives the model
greater flexibility to efficiently handle generation tasks for
different styles and scenes. This innovation enables Parti to
excel in diverse generation tasks. It significantly improves the
quality of generated images, resulting in more refined and
diverse visual outcomes.

In addition to the above models, CoCa [57] is also a model
that has achieved remarkable success in the field of generative-
based VLMs. CoCa combines the strengths of contrastive
learning and generative learning by utilizing a large amount
of unlabeled data for pre-training and thus efficiently learns
the deep associations between images and text. The core idea
of CoCa is to optimize the text-image alignment by using the
loss of contrasts, which enables it to generate image-text pairs
with a high degree of consistency. In the image generation task,
CoCa generates visually appealing images. It also ensures that
these images closely match the input text descriptions. As a
result, CoCa demonstrates excellent performance in generation
accuracy.

As technology continues to advance, the potential of
generative-based VLMs will be realized in more practical
applications. In the future, generative visual language models
may not only be able to generate high-quality images and text
but also be able to understand complex cross-modal tasks, thus
driving the further development of multimodal AI systems.
The wide application and continuous optimization of these
models will help to address the challenges in visual-linguistic
integration better and drive the progress and innovation of
intelligent systems in multiple domains.

D. VLMs from Pre-trained Backbones

Building VLMs from scratch is undoubtedly challenging,
with the core difficulties of high cost and inefficient com-
putation [41]. First of all, if a VLM is trained from scratch,
two distinct modalities, visual and linguistic, must be mastered
simultaneously, meaning that not only image feature extraction
but also linguistic semantics modeling must be handled. For
a model to have good generalization ability, it often needs
to rely on large-scale cross-modal datasets, and labeling such
data is undoubtedly a time-consuming and labor-intensive task.
In addition, the combination of multiple modalities makes the
number of parameters in a multimodal model far exceed that of
a single-modality model, and the high consumption of compu-
tational resources for training is a huge burden for researchers
and enterprises. To cope with this dilemma, VLMs from Pre-
trained Backbones have emerged to provide a more efficient
and economical alternative. Pre-trained models in the visual
and linguistic domains have been deeply trained on massive
datasets, capturing and refining the generic feature representa-
tions of their respective modalities. These pre-trained weights
can be used as the basis for visual language models, and
excellent model performance can be quickly achieved through
migration learning and a small amount of cross-modal task
fine-tuning, greatly improving training efficiency.

LLaVA [58] is a cross-modal dialog Al assistant that com-
bines LLaMA [59] and CLIP, focusing on image and text syn-
ergistic understanding.LLava utilizes GPT-4 to convert image-
text pairs into instruction-following formats, thus collecting
multimodal instruction data covering three categories: dialog,
detailed description, and complex reasoning, with 158K sam-
ples. The model architecture connects the CLIP visual encoder
with the Vicuna language decoder, which is trained in two
stages of instruction tuning. In the first stage, we pre-train
the alignment features, filter and transform some image-text
pairs of CC3M, and train only the projection matrix; in the
second stage, we update the weights of the projection layer
and the language model according to different task scenarios
in order to improve the model’s visual instruction-following
and reasoning capabilities.

BLIP-2 [39] innovatively proposes a visual language pre-
training method, which is centered on the clever use of
frozen pre-trained image encoders and LLMs, the use of a
lightweight Q-Former to bridge the modal effectively, so as
to achieve the performance improvement and cost reduction
through the well-designed two-phase pre-training strategy. At
the model architecture and pre-training target level, Q-Former
covers image and text transformer sub-modules with a total of
188M parameters. For the pre-training setup and its significant
advantages, a rich dataset combined with the CapFilt [2]
method to generate synthetic subtitles is used as the data
support, the ViT model is carefully selected to be the image
encoder, and OPT [60] or FlanT5 [61] is used as the LLM
so that the pre-training process can be carried out in phases



and in an orderly manner under specific parameter conditions.
With this unique approach, BLIP-2 can demonstrate excellent
performance in visual-linguistic tasks with a small number of
trainable parameters and is capable of zero-sample instruction
image-to-text generation.

IV. EVALUATION

A. VLM Benchmarking

Vision language model bridge the gap between visual and
text information, enabling large models to be used in broader
scenarios beyond text generation, translation, etc. VLM bench-
marking refers to using evaluation datasets and metrics to test
the performance of VLM models. At the very early stage of
VLM development, evaluation for VLM is divided into two
tasks, image captioning and Visual Question Answering.

B. Image Captioning

Image captioning is the task of automatically generating
descriptive textual captions for an image. This task is essential
for evaluating the ability of VLMs because it directly assesses
the ability to understand images and generate text. Image
captioning typically involves two parts, the first part is an
encoder for image processing and feature extracting, and the
second part is a decoder, taking in the extracted features and
generating text word by word. Both language ability and vision
ability for VLMs are crucial in performing image captioning
tasks. The COCO [62] (Common Objects in Context) dataset
is widely used in the evaluation of image captioning. COCO
is a large-scale dataset that is designed for training and testing
in object detection, segmentation, and captioning. It has 330K
images and more than 200K of them are labeled. COCO
also has a tailored feature for image captioning tasks, as it
provides 5 captions per image in the captioning subset. The
captioning subset has 413,915 captions for 82,783 images in
training, 202,520 captions for 40,504 images in validation,
and 379,249 captions for 40,775 images in testing. Evaluation
of performance using the COCO dataset in image captioning
involves using third-party metrics [63], including BLEU [64],
METEOR [65], ROUGE-L [66], and CIDEr [67]. These met-
rics measure the alignment between generated captions and
true captions. However, these metrics do not truly reflect the
captioning performance due to the existence of false negative
issues. Since there are only limited and determined captions
for each image, applying these metrics will reduce the score
for similar captioning that varies in expressions. Many recent
works introduce large modality models into the evaluation
process, which make the evaluation more robust by mitigating
false negative problems.

C. Visual Question Answering

Visual Question Answering is a more challenging and
comprehensive task compared to image captioning. VQA in-
volves answering diverse, context-rich questions about images,
making it a challenging task that tests both visual recognition
and linguistic reasoning. Popular datasets like the VQA v2
[68] dataset provide a foundational benchmark, with its exten-
sive question-answer pairs from COCO images. CLEVR [69]
focuses on compositional reasoning using synthetic scenes.
Other datasets like GQA [70] and VizWiz [71] push models
toward improved reasoning and robustness, covering structured
scene graphs and real-world scenarios, respectively.

More challenging VQA tasks do not limit testing VLM
ability in simply processing images and text. Many other tasks
also involve the ability to use general knowledge for analysis,
logical reasoning, etc. OK-VQA [72] (Outside Knowledge
VQA) is a challenging Visual Question Answering dataset
designed to test models’ ability to answer questions requiring
external knowledge beyond the image content. Unlike standard
VQA datasets, where questions are mostly answerable by
analyzing visual information, OK-VQA includes open-domain
questions that demand reasoning and factual information
sourced from general knowledge. For example, a question
might ask, "What type of animal is shown in this picture?”
where recognizing a specific breed or habitat would require
prior knowledge. The dataset includes approximately 14,000
images and 30,000 questions derived from the COCO dataset,
encouraging the development of systems that combine visual
understanding with knowledge retrieval mechanisms to bridge
the gap between perception and reasoning.

As the reasoning ability of large models remains questioned
by the general public, benchmarks designed from challenging
tasks in mathematical reasoning from visual contexts become
a popular way to test the reasoning ability for VLMs.

The MATHVISTA [73] dataset is a comprehensive bench-
mark designed to evaluate mathematical reasoning in visual
contexts. It addresses a critical gap in existing datasets that pri-
marily focus on textual problems. It includes 6,141 examples
derived from 28 multimodal datasets and three newly created
datasets—IQTest, FunctionQA, and PaperQA. These tasks
span diverse mathematical reasoning types, such as algebraic,
geometric, logical, and statistical reasoning, across various
visual contexts like natural images, charts, function plots,
and diagrams. MATHVISTA’s examples are annotated with
metadata, including question type, grade level, and reasoning
skills, and are curated to challenge Al models with fine-
grained visual understanding and compositional reasoning.

The MATHVERSE [74] dataset is a benchmark for evaluat-
ing the multi-modal mathematical reasoning skills of VLMs.
It contains 2,612 visual math problems drawn from plane
geometry, solid geometry, and functions, transformed into six



distinct versions, contributing to over 15,000 test instances.
These versions systematically adjust the textual and visual
content to assess whether models can truly interpret diagrams
for mathematical reasoning rather than relying solely on
textual descriptions. Additionally, MATHVERSE introduces a
novel Chain-of-Thought (CoT) evaluation strategy, leveraging
GPT-4 to assess step-by-step reasoning, enabling detailed error
analysis and fine-grained scoring. This benchmark aims to
address limitations in current datasets by challenging models
to balance textual and visual reasoning for solving math
problems.

D. Benchmarking Hallucination

Hallucinations are a significant challenge for large language
models as well as vision language models. These models
often generate information with high confidence that appears
plausible but is entirely false. Similarly, vision-language mod-
els (VLMs) could hallucinate by generating text or captions
unrelated to the images they are tasked with describing. This
is unacceptable and significantly harmful when VLMs are
used in scenarios where a single hallucination or mistake will
drive bad results. For example, in the self-driving scenario,
if the VLM in the system hallucinates and provides wrong
commands to the driver, it may cause severe safety problems.
That is the reason why in most autonomous driving systems,
the end-to-end model is the one that really does the self-driving
part, where VLMs take into place when encountering more
complicated road conditions and provide only suggestions for
the human driver. It is still not safe to trust VLMs in many
real-world applications. Therefore, evaluating whether VLMs
produce hallucination-free outputs is a critical area of research.

CHAIR [75] is the first benchmark for detecting object
hallucinations in image captions. It focuses on a fixed set of
objects from the COCO dataset and is especially useful for
evaluating short, single-sentence captions. However, CHAIR
has limitations when applied to longer outputs from modern
VLMs. It may misclassify hypothetical statements as hallu-
cinations, and overlook hallucinations outside the predefined
object set. And given its limitation in the COCO dataset,
which is an almost must-have training set for modern VLMs,
CHAIR lacks the ability to do a comprehensive evaluation of
hallucination.

Recent research, POPE [76], offers a more flexible approach
by using binary polling questions, including both positive
(grounded in true objects) and negative (derived from unrelated
objects). GAVIE [77] (GPT4-Assisted Visual Instruction Eval-
uation) leverages the power of using GPT-4 to generate visual
instructions, and uses LRV-Instruction includes both positive
and negative instructions, designed across three semantic lev-
els: Nonexistent Object Manipulation, Existent Object Manip-
ulation, and Knowledge Manipulation, to enhance robustness.

Most recent hallucination benchmark, which is also used

by HuggingFace OpenVLM Leaderboard, is called Hallusion-
Bench [78]. This benchmark is designed to evaluate advanced
large visual-language models (LVLMs) like GPT-4V (vision),
Gemini Pro Vision, Claude 3, and LLaVA-1.5 on nuanced
image-context reasoning. It has 346 images and 1129 expert-
crafted questions, emphasizing logical consistency, response
tendencies, and failure modes through a novel question struc-
ture enabling controlled analyses. The same team recently de-
velop a new framework to automatically generate benchmark
for studying hallucinations in large vision-language models
(LVLMs). Traditional benchmarks rely on hand-crafted corner
cases with limited generalizability, where the new method,
AUTOHALLUSION [79] scales up the creation of halluci-
nation examples through an automated approach, minimizing
human bias. This framework will benefit researchers in con-
structing benchmark dataset and could be used together with
human-crafted cases.

E. Comprehensive Benchmarks

A holistic benchmark like MMBench [80] for vision-
language tasks is becoming more popular than traditional
benchmarks because it evaluates models across a broader
spectrum of tasks, datasets, and metrics, offering a more
complete picture of their strengths and weaknesses. Unlike
narrow benchmarks that focus solely on task-specific accu-
racy, a holistic approach considers system-level performance,
including scalability, efficiency, and robustness, ensuring that
models are not only effective but also practical for real-world
deployment.

MMBench is a specialized benchmarking designed for
vision-language tasks, providing a holistic evaluation frame-
work that goes beyond traditional benchmarks focused on
isolated metrics or narrow datasets. MMBench implements
a robust CircularEval strategy and leverages large language
models to transform free-form predictions into predefined
options, ensuring precise evaluation results, even for models
with limited instruction-following abilities. CircularEval is
able to achieve a good trade-off between robustness and cost.
It addresses limitations in existing benchmarks by providing
over 3,000 multiple-choice questions spanning 20 ability di-
mensions. Those 20 dimensions are branched from reasoning
and perception tasks. 8 dimensions are branched from rea-
soning, including physical property, function relation, identity
reasoning (above belongs to attribute reasoning), future predic-
tion, structuralized image-text understanding (above belongs
to logical reasoning), social relation, physical relation, and
natural relation (above belongs to relation reasoning). 12
dimensions lie under the perception category, including image
topic, image quality, image emotion, image scene, image
style (above belongs to coarse perception), spatial relationship,
attribute comparison, action recognition (above belongs to
cross instance fine-grained perception), attribute recognition,
object localization, celebrity recognition, OCR (above belongs



to single-task fine-grained perception). This comprehensive
scoreboard provides a more holistic evaluation of the VLM
performance and provides more robust results compared with
other single-task benchmarks.

MMStar [81] is a meticulously curated multi-modal bench-
mark designed to evaluate the capabilities of large vision-
language models (LVLMs). It addresses critical issues in
existing benchmarks, such as visual redundancy and data
leakage, by ensuring that its 1,500 evaluation samples demand
genuine visual dependency and advanced multi-modal reason-
ing. MMStar spans six core capabilities and 18 detailed axes,
rigorously assessing areas like fine-grained perception, logical
reasoning, and scientific analysis. The benchmark includes
innovative metrics, such as Multi-modal Gain and Multi-modal
Leakage, to accurately measure the effectiveness of multi-
modal training while mitigating biases from leaked training
data. MMStar provides a robust, balanced, and high-quality
evaluation platform, offering researchers a clear lens to assess
and improve the performance of LVLMs.

MME [82] is the first comprehensive evaluation benchmark
for Multimodal Large Language Models (MLLMs), designed
to assess both perception and cognitive abilities across 14 sub-
tasks. The benchmark addresses limitations in existing evalua-
tion methods by using entirely manually designed instruction-
answer pairs, which eliminates the risk of data leakage
from publicly available datasets. MME features concise and
standardized instructions, allowing fair comparisons among
MLLM:s without reliance on extensive prompt engineering. By
evaluating 30 advanced MLLMs, MME identifies significant
gaps and potential directions for improvement in tasks such
as commonsense reasoning, numerical calculation, and code
reasoning. This benchmark sets a new standard for rigorously
testing and advancing the capabilities of MLLMs.

MMMU [83] (Massive Multi-discipline Multimodal Under-
standing and Reasoning) is an extensive benchmark tailored
for assessing the expert-level capabilities of large multimodal
models (LMMs). It features 11,500 college-level questions
sourced from exams, textbooks, and quizzes, spanning six
core disciplines—Art Design, Business, Science, Health
Medicine, Humanities Social Sciences, and Technology En-
gineering—covering 30 subjects and 183 subfields. MMMU
challenges models with highly heterogeneous data, including
diagrams, tables, medical images, and more, demanding deep
domain knowledge and reasoning. Unlike existing bench-
marks focused on commonsense reasoning, MMMU empha-
sizes complex perception and deliberate reasoning. Evaluations
highlight significant gaps between current model performance
and human expertise, positioning MMMU as a vital tool for
driving progress toward advanced Al capable of handling
domain-specific multimodal tasks.

MM-Vet [84] is a benchmark designed to evaluate the inte-
grated capabilities of Large Multimodal Models across com-

plex tasks requiring combinations of six core vision-language
abilities: recognition, OCR, knowledge, language generation,
spatial awareness, and math. It includes 16 integrated tasks and
employs an innovative LLM-based evaluator to score open-
ended model outputs, ensuring thorough assessment across
diverse question types and answer styles. MM-Vet provides
insights beyond simple performance rankings by analyzing
per-capability strengths and weaknesses, facilitating detailed
comparisons of different LMM designs and paradigms. This
benchmark sets a new standard for evaluating the multi-faceted
abilities of LMMs and identifying areas for advancement in
multimodal Al

Many of these cutting-edge benchmarks are used to rank the
performance of VLMs in various public leaderboards. This fact
also shows the effectiveness of comprehensive benchmarks.
We will introduce one of the most famous leaderboards Open-
VLM [85], presented by HuggingFace, in the next section.

F. HuggingFace OpenVLM Leaderboard

HuggingFace manages a public real-time leaderboard for
open-source VLMs and API models. The current OpenVLM
leaderboard [85] covers 169 different VLMs, including the
most famous ones GPT-4v, Gemini, QwenVLPlus, etc. The
leaderboard integrates 31 different multi-modal benchmarks,
and users can customize the selection of benchmarks they want
to use in their analysis, generating rankings and average scores.
The OpenVLM leaderboard is supported by VLMEvalKit. The
default selection of benchmarks for evaluating the average
performance score is comprehensive, covering evaluations on
general ability, math reasoning, hallucination, etc. The result
shown below uses the same selection, included benchmarks
are: MMBench-V11 [80], MMStar [81], MMMU-VAL [83],
MathVista [73], OCRBench [86], AI2D [87], HallusionBench
[78], and MMVet [84]. For the convenience of fitting the
table in the paper, only the score on MMBench-V11 and
MMStar is displayed in the table, as a reference to the most
important metric Avg Score. Scores are normalized to a scale
of 0-100, and the Avg Score represents the average score on
all the benchmarks selected. A higher score represents better
performance. Moreover, the table only keeps the best model
within the same model family to make better comparisons
between different model families and training schemes. For
example, Qwen2-VL-72B and Qwen-VL-Max-0809 take the
first and second but both of them belong to the Qwen2-72B
model family, so we only keep the score and rank of Qwen2-
VL-72B to keep the table clear.

V. CONCLUSION

The development of Vision-Language Models has witnessed
remarkable progress, driven by innovations in architecture,
training paradigms, and evaluation strategies, with state-of-
the-art models demonstrating capabilities in a wide array



Rank Method Avg Score | MMBench V11 | MMStar
1 Qwen2-VL-72B 74.8 85.9 68.6
2 Step-1.5V 72.5 82 65.1
3 GPT-40 (0806) 71.5 80.5 64.7
4 Ovisl.6-Gemma2 71.3 82.2 63.5
5 InternVL2-Llama3 71 85.5 67.1
6 Claude3.5-Sonnet 70.6 81.7 65.1
7 TeleMM 69.6 82.7 67.9
8 JT-VL-Chat-V3.0 68.4 82.9 65.9
9 LLaVA-OneVision 68 84.5 65.8
10 bailingMM-mini 67 82.2 61.3

TABLE T

VLM LEADERBOARD

of tasks that combine visual and textual modalities. These
advancements highlight the potential of VLMs in areas such
as multimodal reasoning, open-world recognition, and cross-
disciplinary problem-solving.

The evaluation landscape for VLMs is evolving, with bench-
marks such as MM-Vet, MMStar, and MME driving the focus
toward comprehensive assessments of integrated abilities and
fair comparisons. These benchmarks expose gaps between
current model performance and human-level understanding,
emphasizing the need for better architectures, more diverse
and high-quality training datasets, and improved evaluation
strategies.

Challenges remain in the current stage of VLM develop-
ment, including but not limited to scalability issues due to
high computational demands, biases in training data that hinder
fairness and generalization, and limited robustness to noisy
or adversarial inputs. Future VLM development could focus
on refining model robustness, reducing reliance on large-scale
resource consumption, and enhancing interpretability to ensure
these systems are trustworthy and applicable across critical
domains. Addressing these challenges will enable VLMs to
transition from promising prototypes to transformative tools in
industries. Furthermore, VLMs could be potentially extended
to video modality, which will unveil much broader application
scenarios.
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